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ABSTRACT
In the past years, Location-based Social Network (LBSN) data have

strongly fostered a data-driven approach to the recommendation

of Points of Interest (POIs) in the tourism domain. However, an

important aspect that is o�en not taken into account by current

approaches is the temporal correlations among POI categories in

tourist paths. In this work, we collect data from Foursquare, we

extract timed paths of POI categories from sequences of temporally

neighboring check-ins and we use a Recurrent Neural Network

(RNN) to learn to generate new paths by training it to predict

observed paths. As a further step, we cluster the data considering

users’ demographics and learn separate models for each category

of users. �e evaluation shows the e�ectiveness of the proposed

approach in predicting paths in terms of model perplexity on the

test set.

KEYWORDS
Sequence learning, path recommendation, tourism, POI recommen-

dation

1 INTRODUCTION
Location-based Social Networks (LBSN) allow users to check-in in

a Point-of-Interest (POI)
1

and share their activities with friends,

providing publicly available data about their behavior. One of the

distinctive features of LBSN data with respect to traditional lo-

cation prediction systems, which are mainly based on GPS data

and focus on physical mobility [33], is the rich categorization of

POIs in consistent taxonomies, which a�ribute an explicit semantic

meaning to users’ activities. �e availability of venue categories

has opened new research lines, such as statistical studies of venues

peculiarities [17], automatic creation of representations of city

neighborhoods and users [22, 25], de�nition of semantic similari-

ties between cities [24]. Most importantly, venue categories play

an important role in POI recommender systems, as they enable to

model user interests and personalize the recommendations [18].

In the past years, li�le a�ention has been dedicated to the tem-

poral correlations among venue categories in the exploration of a

1
�e term venue is used interchangeably with POI in this work to describe an entity

that has a somewhat �xed and physical extension as de�ned by h�p://schema.org/Place

city, which is nonetheless a crucial factor in recommending POIs.

Consider the example of a check-in in an Irish Pub at 8 PM: is the

user more likely to continue her evening in a Karaoke Bar or in an

Opera House? Be�er a Chinese Restaurant or an Italian Restaurant
for dinner a�er a City Park in the morning and a History Museum
in the a�ernoon? Note that predicting these sequences require

an implicit modeling of at least two dimensions: 1) temporal, as

certain types of venues are more temporally related than others

(e.g. a�er an Irish Pub, people are more likely to go to Karaoke than

to a History Museum 2) personal, as venue categories implicitly de-

�ne a user pro�le, independently from their order (e.g. Steakhouse
and Vegetarian Restaurant do not go frequently together). Most of

existing studies a�empt to model directly sequences of POIs rather

than their categories to recommend the next POI to a user (see

‘next POI prediction’ in Sec. 2). In this work, we focus on model-

ing sequences of POI categories to enhance the generality and the

portability of the obtained results. �is can be considered as a �rst

step in the next POI prediction problem, as the POI category can

then be turned into a speci�c POI by querying a database of POIs

according to a variety of parameters, such as the user context (e.g.

position, weather) and/or speci�c POI features such as popularity,

average prices and the like.

In order to address this problem, we �rst collect users’ check-ins

from Foursquare and extract their corresponding venue categories,

segmenting them into a set of temporally neighboring activities,

which we call paths. �en, we train a Recurrent Neural Network to

learn to predict these paths in order to generate new ones, thanks

to its architecture that is speci�cally meant to model temporal

sequences without specifying a speci�c memory length. In the

a�empt to take into consideration the fact that the nature of the

generated sequences is not universal, but it critically depends on

the typology of user, we cluster users in groups and learn separate

models for each of them. Di�erently from previous work [32], we

cluster users based on their demographics rather than on their past

activities, consistently with the intent of obtaining results that are

portable to new data without a cold start problem.

�e main scienti�c contributions of this paper are: (1) address-

ing the problem of next POI category using a machine learning

approach on sequences of temporally consecutive check-ins; (2)

use of a Recurrent Neural Network (RNN) with Gated Recurrent

http://schema.org/Place


Units (GRU) with multiple layers as a model; (3) an initialization

of the vectors fed to the neural networks using an unsupervised

feature learning algorithm (node2vec) on the hierarchical graph

modelling the Foursquare taxonomy; (4) a user clustering based

on demographics that is not a�ected by the cold start problem; (5)

an evaluation protocol based on perplexity, which is new in this

domain and is able to address the limitations of using accuracy on

a set of interdependent target categories.

2 RELATEDWORK
2.1 Venue categories
�e availability of venue categories from LBSN data has inspired a

number of studies in the past years. In [17], the authors assess the

correlations among venue categories and popularity with a statis-

tical study on a large sample of check-ins collected from di�erent

geographical regions. In [26], the authors leverage venue categories

to automatically create a high level map of the neighborhoods of

a city using density-based clustering techniques. In [22], the au-

thors use venue categories to create semantic representation of city

neighborhoods and users. In [24], the authors create a semantic

representation of a city as a bag of venue categories and use it to

de�ne a similarity measure between cities.

2.2 Next POI recommendation
All of these studies, however, do not take into account the temporal

dependence among venue categories, i.e. they do not a�empt to

predict where a user will move next considering the history of

her movements in terms of venue categories. �is task is similar

to the next POI prediction, which has received some a�ention in

the past years. For instance, in [4] the authors propose a matrix

factorization method including personalization and geographic con-

straints that a�empts to predict the next check-in of the user based

on her past activities and geographical factors. In [8], the authors

use a metric embedding approach to develop a personalized model

of the sequential transition of POIs. �ese two studies directly

develop a model to recommend the next POI, while, similarly to

our approach, in [32] the authors focus on modeling sequences of

venue categories. �ey propose a framework that uses a mixed hid-

den Markov model to predict the most likely next venue category

and recommend POIs belonging to the most likely next category

in the neighborhood of the user. Although this work has some

common features with the one proposed in this paper, such as

the modeling of venue categories transitions rather than directly

the POIs transitions, there are important di�erences. First, they

utilize Gowalla’s
2

data and venue categorization, which included

only nine broad categories, such as Food or Shopping, which can

reasonably considered independent among each other. Our work,

on the other hand, is based on Foursquare taxonomy
3
, which in-

cludes 920 categories organized in a hierarchical fashion, and thus

requiring a more complex modeling e�ort. Secondly, while they

cluster users based on their past activities, we follow a di�erent

approach, considering user demographics, e�ectively tackling the

new user problem. �ird, they use a Hidden Markov Model while

we use an approach based on Recurrent Neural Networks. Finally,

2
h�ps://en.wikipedia.org/wiki/Gowalla

3
h�ps://developer.foursquare.com/categorytree

they evaluate the proposed approach using accuracy, while we use

perplexity.

2.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) have received a great deal of at-

tention in machine learning research lately [16], as, thanks to their

improved architectures [5, 12] and the advancements in computa-

tional power, they are able to e�ectively model sequences. For this

reason, they have been used successfully for tasks such as speech

recognition [10], sentiment analysis [30], image captioning [13]

and neural language models [20]. One of the typical applications of

RNN in the �eld of language modeling is that of generating text by

recursively predicting the next word in a sentence [29]. �is task is

very similar to the use of RNNs in this work, in which the analogy

is that of interpreting a sequence of venue categories coming from

users’ check-ins as a sentence in a text.

2.4 Itinerary recommendation
�e problem of modeling and recommending paths to users share

important features with that of itinerary recommendation, which

aims at recommending sequences of POIs, considering constraints

such as time, budget and personal preferences. Typically, to each

POI a score is assigned based on popularity and/or personal prefer-

ences, travel times between POIs are inferred from data, and the

problem of itinerary recommendation is tackled as an optimization

problem where the objective is to maximize the total possible score

of the itinerary while complying with the constraints [7, 15, 31].

Note that the greatest di�erence with our approach is that we do

not explicitly formulate the optimization problem with constraints,

but rather assume that good paths will be learned from LBSN data.

3 APPROACH
3.1 Problem statement
In this work, we address the problem of next POI category predic-

tion, i.e. we aim to learn to predict the category of the next POI

that a user will visit, in order to be able to generate and recommend

new paths.

Definition 1. Given the space of POI categories C , the space of
check-in ids I , the space of timestamps T , the space of users U , a
check-in is a set v = {i, c,τ ,u} where i ∈ I is the check-in id, c ∈ C is
the category of the POI, τ ∈ T is the timestamp at which the check-in
has been performed and u ∈ U is the user who has performed the
check-in.

Definition 2. A path is an ordered sequence of POI categories
(c1, c2, ..., ct ), extracted from a sequence of temporally ordered check-
ins performed by a particular user u ∈ U , i.e. ({ii , ci ,τi ,u}) for
i = 1..N and where τ (i + 1) > τ (i) ∀i .

Definition 3. We de�ne a category index α ∈ N with α = 1..|C |
and that uniquely identi�es a category cα ∈ C .

In order to learn to generate the next category ct+1 of a path, we

collect M paths from LBSN and learn a model of the conditional

probability P(ct+1 |ct , ct−1, ct−2, ..., c1) from these sequences of POI

categories. �en, from this model, the next category ct+1 can be

2

https://en.wikipedia.org/wiki/Gowalla
https://developer.foursquare.com/categorytree


determined as:

ct+1 = arg max

c ∈C
P(c |ct , ct−1, ct−2, ..., c1) (1)

3.2 Model
We propose an approach based on Recurrent Neural Networks,

which are speci�cally meant to deal with sequential data. �e

main di�erence of RNNs with respect to standard feed-forward

neural networks is the presence of a hidden state variable ht , whose

value depends both on the input data presented at time xt and, by

means of loop connections, on the previous hidden state ht−1[9]. A

typical application of RNNs in neural language modeling is that of

generating text recursively applying a “next word prediction” [29],

and in the same spirit we address the problem of next POI category

prediction. �e main idea is that of using a supervised learning

approach where the targets correspond to the inputs shi�ed in time,

i.e. X = {(c j 0, c j 1, ..., c jNj−1
)} and Y = {(c j 1, c j 2, ..., c jNj

)} where

j = 1...M is the path index and Nj is the length of the j − th path.

�e architecture of the neural network is illustrated in Fig. 1. To

simplify the notation, we now drop the path index j and consider

one path to illustrate the functioning of the network. A venue

category ct is fed into the network via an encoding into an input

vector xt , which is then passed to a Gated Recurrent Unit. Gated

Recurrent Units (GRU) are gating mechanisms that improve the

ability of the RNNs to store long sequences and that recently have

been proven to be as e�ective as more complicated architectures

such as Long Short-Term Memory (LSTM) units [5]. �e update of

the GRU unit hidden state, i.e. the computation of the new state ht
given the previous state ht−1 and the current input xt , is described

by the following equations:

rt = siдmoid(Wrht−1 +Wrxt + br ) (2)

h′t = tanh(Wi (rt ⊗ ht−1) +Wixt + bi ) (3)

zt = siдmoid(Wzht−1 +Wzxt + bz ) (4)

ht = zt ⊗ h′ + (1 − zt ) ⊗ ht−1 (5)

where sigmoid and tanh indicate respectively the sigmoid and hyper-

bolic tangent activation functions and ⊗ represent the element-wise

product of the matrices. r is called the ‘reset gate’ and it allows to

forget or remember the previous state ht−1 when generating the

candidate state h′t . z is called the ‘update gate’ and intuitively it

controls how much the unit needs to update its state. Wi ,Wr ,Wz
are weight matrices that are learned during the training.

�e GRU computes the hidden state ht which is stored for the next

iteration and used to compute the output of the current iteration ot .

Before computing the output ot , during training time, a Dropout

layer is applied. �e Dropout layer is a regularization mechanism

which, at training time, randomly switches o� a fraction p of neu-

rons, called the dropout rate, preventing them from co-adapting and

over��ing the sampled data [28]. Dropout can be modelled with a

mask vector mt , whose values can be either 1 or 0 with probability

p. A�er the dropout layer, the output state ot = tanh(Wohtmt )
is computed using a fully connected layer whose weights are de-

�ned by the matrix Wo , which is learned at training time. Wo is

shaped so that the dimension of the output vector is equal to the

number of possible categories, i.e. |ot | = |C |. �us, we can index

the components of the output vector using the category index oαt .

�en, the So�max layer normalizes the outputs, turning them into

a probability distribution over a set of possible outcomes [2]:

so f tmax(oαt ) =
eo

α
t∑ |C |

k=1
eo

k
t

(6)

In this way, the So�max layer models the probability distribution

of the next category:

so f tmax(oαt ) = P(ct+1 = c
α |ct , ct−1, ct−2, ..., c1) (7)

as oit depends on the current category encoding xt of ct , but also

on all the previous encodings of the sequence by means of the

hidden state ht . During the training process, we train the network

to produce a probability distribution of categories that is as close as

possible to that observed in the data, i.e. maximizing the probability

of the observed data. �erefore, we de�ne the loss Lt as the cross

entropy:

Lt = −loдP(ct+1 = c
α
t+1
|ct , ct−1, ct−2, ..., c1) = −loд(so f tmax(oαt ))

(8)

where cαt+1
is the category observed in the data as t + 1 element

of the path. �e loss is optimized using Adam [14], an enhanced

version of the stochastic gradient descent that introduces momen-

tum and adaptive learning rates. �e gradients of the loss function

are computed using back propagation on the unrolled neural net-

work [27]. �e model has a number of hyper-parameters, such as

the number of neurons in the hidden state nhidden , the number

of hidden layers nlayers , the learning rate lr and the number of

epochs η. We optimize these hyper parameters using a grid search

on a validation set (see Sec. 5).

3.3 Feature learning from category hierarchy
In this work, the space of possible categories C is de�ned by the

Foursquare Taxonomy, which de�nes and classi�es categories in

a hierarchical ontology. As can be seen in Fig. 1, it is necessary to

specify an encoding to turn the categories into input vectors to be

fed into the neural network. A simple and widespread approach to

encode categorical variables is that of using the so called one-hot
encoding, i.e. to use a binary vector whose dimension is equal to

the size of the vocabulary d = |C | where only one component is

di�erent from 0 using the category index α :

xone−hotk (cα ) =
{

1 ⇐⇒ k = α
0 ⇐⇒ k , α

�e one-hot encoding is a sparse representation and, although

straight forward and intuitive, has a number of shortcoming. First,

the size of the input vector depends on the size of the category

vocabulary C . �is can be de�ned as the total number of distinct

categories that appear in the data, hindering the applicability of the

model to unobserved categories, or as the total number of possible

categories, which can result in a waste of computational resources

when certain categories are not observed in the data. Secondly, the

one-hot encoding considers each category as independent from

each other and equidistant from the others. Consider as an example

the case of three categories: Restaurant = (1,0,0), Italian Restau-
rant = (0,1,0), Movie �eater = (0,0,1). �is representation does not

allow to determine whether Restaurant is more similar to Italian
Restaurant or Movie �eater and thus fails to e�ectively represent

the hierarchical relations among categories. For this reason, we

3



Art_Museum Park Sushi_Restaurant EOP

Cafeteria Art_Museum Park Sushi_Restaurant

GRU

x0

o0 o1 o2 o3

x1 x2 x3

Dropout Dropout Dropout Dropout

Target

encoding encodingencodingencoding

GRU GRU GRU

Input layer

Hidden layer(s)

Output layer

Softmax Softmax SoftmaxSoftmax

h0
h1 h2 h3

Wo Wo Wo Wo

c1 c2 c3
c4
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Figure 1: Architecture of the RNN. ‘EOP’ is a special symbol describing the end of a path.

use node2vec [11], an unsupervised feature learning approach that

maps nodes in a graph to a dense vector representation in a Eu-

clidean space of �xed dimension preserving the structure of the

graph. Node2vec can be seen as an adaptation of the word2vec

model [21] to graphs, as it simulates a random walk on the graph,

turning it into an order sequence of nodes, which constitutes the

“words” of a document that is then processed using word2vec. In

node2vec, we use a uniform exploration, i.e. p = q = 1, a dimen-

sion of the obtained vector d = 100 and 100 walks per category

node. In Sec. 5, we compare the results obtained with xone−hot and

xnode2vec
, showing that the la�er leads to be�er result and faster

computation. A dynamic visualization of the node2vec category

embedding can be found online
4
. To obtain a good visualization,

we suggest to use TSNE [19] with at least perplexity 20 and 1000

iterations.

3.4 Personalized model
In order to take into account the fact that the next POI category pre-

diction problem can strongly be in�uenced by personal a�ributes

of a user, we segment the set of users U in a collection of clusters

according to the user demographics. Considering the set of lan-

guages l ∈ L and of genders д ∈ G , we generate all possible clusters

Ulд , Ul , Uд and we segment the whole set of paths P accordingly

generating Plд , Pl , Pд . We split each of them into training set and

test set containing respectively 80-20% of the data, we train the

model on the training sets and assess performance on the test sets.

4 EXPERIMENTAL SETUP
4.1 Data Collection
In order to collect check-ins and su�cient user information to

perform a demographic clustering, we use as data sources both

the Twi�er and the Foursquare API. We collect via the Twi�er

4
h�p://projector.tensor�ow.org/?con�g=h�ps://gist.githubusercontent.

com/enricopal/9a2683de61f5�16c4f59ae295e3fef7/raw/

159df72f47e881d0f314096fcc8ea561�7132b9/projector con�g.json

Search API check-ins done through the Swarmapp
5

application

and publicly posted on Twi�er, obtaining 1.5M check-ins from

235.6K users in the temporal interval going from 05-04-2017 to

11-04-2017. From this data, we are able to extract for each check-

in the language spoken by the user and the id of the check-in.

With the check-in id, to gather additional information about the

venue and the user, we query the Foursquare API
6
, obtaining the

venue category c and the user gender. �us, for each user, we

have: (user id, lanдuaдe,дender , (c1,τ1), ..., (cN ,τN )), where τ is

the timestamp of the check-in.

4.2 Preprocessing and Path Extraction
Among all users, only a small part of them uses the application

frequently enough to be likely to generate a path. �us, as a pre-

�lter to speed up the next processing steps, we �lter out users with

less than 10 check-ins. We also observe that there are users with a

very large number of check-ins, who are likely to be bots. In order

to remove them, we develop a heuristic according to which if a

user has done more than twice two check-ins in one minute is a

bot. By manually checking the results on a sample of 50 users, we

observe no false positives. �en, in order to extract the paths, i.e.

temporal sequences of correlated venue categories, we apply the

principle according to which two check-ins are part of the same

path if and only if they both occur within a time window, similarly

to what has been done in [7]. �us, given a set of timestamped

check-ins performed by a given user (c1,τ1), ..., (cN ,τN ), we split

this sequence in multiple paths whenever τi+1 − τi > 8h, i.e. the

time di�erence between two consecutive check-ins is higher than 8

hours. Isolated check-ins, i.e. with τi+1−τi > 8h and τi−1−τi > 8h,

are removed from the data. We obtain 29.5K paths, with an average

length of 4.2 and a maximum length of 50. In Tab. 1, we report the

number of users and check-ins a�er each preprocessing step.

5
h�ps://www.swarmapp.com

6
h�ps://developer.foursquare.com/docs/checkins/resolve
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Users Check-ins
Collection 235.6K 1.5M

More than 10 check-ins 19.5K 400K

Bot removal 12.4K 184K

Path extraction 12K 123K

Table 1: Number of distinct users and check-ins originally
and a�er each preprocessing step.

4.3 User clustering
As we have mentioned in Sec. 1, the way in which tourists explore

a city is di�erent and personalized. Although a personalized path

recommendation would be desirable, the amount of training data is

not su�cient to achieve such a goal. �erefore, we cluster users in

groups and tailor the path recommendation to a given user group.

In order to obtain results that are general and do not depend on

the speci�c dataset that we have collected, we propose a clustering

approach based on the user demographics information that we have

collected, i.e. the language and the gender of the user, segmenting

the collected paths according to these clusters. We observe 30

distinct languages in the data and count the number of paths per

each language-gender pair. We also consider higher level clusters

such as: (all, gender) and (language, all), which can be used when

only one of the two features about the user is available. We require

to have at least 100 users to create a cluster, obtaining 22 distinct

clusters.

4.4 Evaluation
In the experimental part of this work, we try to answer to the fol-

lowing research questions:

1) What is the most e�ective architecture of the RNN model, i.e.

what are the best hyper-parameters of the model?

2) Is the dense encoding provided by node2vec more e�ective than

the sparse one-hot encoding?

3) Are Recurrent Neural Networks be�er at generating paths with

respect to a model with a �xed memory window, such as a bigram

model?

4) Is the clustering of users favoring or hindering the e�ectiveness

of the model?

In order to answer to these questions, we need to de�ne an appro-

priate metric to measure the performance of the model. Although

accuracy has a straight forward interpretation as it is simply mea-

sured as the fraction of correctly predicted venue categories, it

would consider all categories independently and weight all errors

in the same way. For example, predicting Sardinian Restaurant or

�ai Restaurant when the true category is Roman Restaurant would

count as an error in the same way. �us, we opt for a di�erent

metric, commonly used in neural language modeling evaluation,

that is perplexity [1, 20]. Perplexity is de�ned as the exponential

of the average negative log-likelihood of the model, which in our

case becomes:

ppl = 2

− 1

(∑Mk=1
Nk )

∑M
j=1

∑Nj
t=1

loдP (c jt+1
=cαt+1

|c jt ..c
j
1
)

(9)

where M is the total number of paths, Nk is the length of the k-th

path and cαt+1
is the category observed in the data as t + 1 element

rank n hidden l r epochs n layers ppl
1 64 10

−4
5 3 71.333

2 64 10
−4

5 2 71.609

3 64 10
−4

2 3 71.630

4 128 10
−4

2 2 71.645

5 128 10
−4

5 2 72.048

Table 2: Perplexity on validation set for the top 5 con�gura-
tion of hyper parameters.

of the path. Intuitively, perplexity measures the “surprise” of the

model in observing the test data. Note that if we roll an ideal die

with a number of faces equal to the number of categoriesC , i.e. p =
1

|C | , the perplexity is then exactly ppl = |C |. �us, the perplexity

can be interpreted as the number of possible outcomes among which

a random system should guess. �e lower the perplexity, the be�er

is the model. Also note that ppl is equal to the exponential in base

2 of the cross entropy between the model and the data distribution,

i.e. the average of the loss Lt over all timesteps of all paths and is

thus naturally optimized by the model training. Having de�ned a

metric to evaluate the model, we create a training set and a test set,

containing respectively 80-20% of the paths. �e validation set used

for the optimization of the hyper-parameters is in turn extracted

as a 20% of the training set.

5 RESULTS
5.1 Hyper parameters optimization
In order to optimize the hyper parameters (experiment 1), we per-

form a grid search, i.e. we explore all the possible combinations of

the following values:

number of neurons in the hidden layer: nhidden = [64, 128]
learning rate: lr = [10

−4, 5 ∗ 10
−4, 10

−3]
number of epochs: epochs = [1, 2, 5, 10]
number of hidden layers: nlayers = [2, 3]
For each con�guration (nhidden , lr , epochs,nlayers ), we train the

model and measure its perplexity on validation data, exploring a

total of 48 possible con�gurations. In Tab. 2, we report the best 5

con�gurations. We can observe that a small learning rate is helping

the model learn and that depth, i.e. number of hidden layers, is

more e�ective than width, i.e. number of neurons in the hidden

layers. We also observe that training the model for more epochs

increases the performance.

In the rest of the section, unless otherwise speci�ed, we use the

best con�guration of the model.

5.2 Test set scores
We now show the results corresponding to the experiments 2 and

3, i.e. we compare the model initialized with node2vec vectors,

with one-hot vectors and the baseline bigram model on the test set.

�e bigram model is built by estimating the 1-st order transition

probabilities P(ct+1 |ct ) by counting their normalized co-occurrence
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System ppl
RNN-node2vec 75.271

RNN-onehot 76.472

bigram+smoothing 125.361

random 741

Table 3: Perplexity on test set for the proposed approach and
baselines.

frequencies on training data and using add-one smoothing to ac-

count for bigrams that do not appear in the training data [3]:

P(ct+1 |ct ) =
max(1,νct+1,ct )
|C | + νct

(10)

where νct+1,ct denotes the frequency of the bigram (ct+1, ct ), i.e. of

co-occurrence of the categories ct+1 and ct whereas νct denotes

the frequency of the category ct .

�e results are reported in Tab. 3. We can observe that the RNN with

node2vec initialization performs be�er with respect to the other

systems and that RNN with one-hot encoding is still far be�er than

the bigram model. �is shows, on the one hand, the e�ectiveness of

node2vec as an initialization strategy and that of RNNs in predicting

paths. We also observe that the di�erence between the node2vec

and one-hot initialization is small, highlighting the ability of RNNs

of learning well also starting from a sparse representation. However,

we observe a ratio in computing time of 1.35, as the model runs in 39

minutes with node2vec embeddings and in 53 minutes with one-hot

encoding on a server with 48 CPU cores and 256GB of RAM, thanks

to the ‘compressed’ representation of the inputs. In general, we

can say that the proposed approach achieves a perplexity of 75.271

on the test set, shrinking of about 10 times the space of possible

categories among which a random system would have to guess.

5.3 Personalized model
In this section, we compare the performance of the global model

to that of the model trained on the paths belonging to a speci�c

user cluster (experiment 4). �e perplexity score, the number of

paths, the average path length and the max length are reported for

each user cluster in Tab. 4. Note that not all users choose to show

their gender or language, as can be veri�ed for example by noting

that Users(M) +Users(F ) < Users(All). From the results, we can

observe that the model perplexity is increasing for certain user

clusters and decreasing for others, hinting to the fact that some

user clusters might be less predictable than others. For instance, we

observe that Turkish speaking users have a much lower perplexity

than Dutch speaking users and we might be tempted to conclude

that the behavior of the former category is much easier to predict

than that of the la�er. However, an important role is played by

the dimension of the training set, which varies signi�cantly across

the clusters and that is a key ingredient in the learning process. In

order to look into the correlation between the model perplexity and

the number of paths corresponding to the user cluster, we create

a sca�er plot (see Fig. 2) and measure the Spearmann correlation

coe�cient among the two variables [6], obtaining a negative corre-

lation ρ = −0.48 with a two-sided p-value p = 0.02. Both the plot

and the correlation coe�cient thus appear to show that the amount

Gender Lang Paths avg l max l ppl
M All 18,718 4.23 50 75.478

F All 8,741 4.16 38 73.024

All En 8,955 3.96 35 71.343

All Ar 439 4.15 28 100.772

All Es 1,745 3.79 17 89.994

All Ja 7,532 5.09 50 84.534

All Nl 293 4.01 37 112.966

All Pt 2,713 3.76 23 72.954

All � 795 4.19 26 90.343

All Tr 6,142 3.85 31 66.838

F En 2,636 3.94 28 74.999

F Es 480 3.81 17 71.223

F Ja 2,290 4.89 37 98.801

F Pt 780 3.79 22 78.355

F � 234 4.05 15 83.601

F Tr 1,863 3.80 18 82.078

M En 5,771 3.95 35 69.481

M Es 1,164 3.74 17 84.008

M Ja 4,726 5.18 50 90.437

M Pt 1,778 3.76 23 70.189

M � 524 4.30 26 94.132

M Tr 3,886 3.89 31 69.056

All All 29,465 4.20 50 75.271

Table 4: Personalized model vs global model.
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Figure 2: Number of paths in user cluster Ui and model per-
plexity. Blue circle correspond to “M”, pink circles to “F” and
black circles to “All”. �e horizontal dashed line correspond
to the global model, including all users.
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Figure 3: Average path length for user cluster Ui and model
perplexity. Blue circle correspond to “M”, pink circles to “F”
and black circles to “All”. �e horizontal dashed line corre-
spond to the global model, including all users.

of training data is negatively correlated with the perplexity of the

model, supporting the intuition that the size of the training set is

actually enhancing the model.

Another factor that might in�uence the performance in terms of

next category prediction across the di�erent user clusters is the

fact that the average path length varies. Similarly to the previous

analysis, we plot average path length and model perplexity (see

Fig. 3) and measure the Spearmann correlation between the vari-

ables, obtaining a position correlation ρ = 0.49 with a two-sided

p-value p = 0.02.

6 CONCLUSIONS
In this paper, we propose a novel approach to recommend sequences

of POI categories, as a �rst step to create a system that is able to

automatically learn from data a personalized tourist path. �e

approach is based on a Recurrent Neural Network model, which

shows to be able to model and predict e�ectively sequences of POI

categories. We experiment di�erent hyper parameters of the archi-

tecture of the network, showing the importance of a small learning

rate and of stacking up multiple layers rather than increasing the

number of neurons in the hidden layers. We also show that initial-

izing the categories using an encoding based on node2vec improves

the performance of the model with respect to the standard one-hot

encoding, both in terms of model perplexity and of computing time.

�e analysis of the results of the model using di�erent user clus-

ters has a less de�nite interpretation, as we observe that in certain

cases the performance increases and in other cases the performance

decreases. We suggest that possible biasing factors are the size of

the training set and the average path length, which is con�rmed

by a correlation analysis with the perplexity of the model. Further

studies will extend the analyses to a larger dataset with a larger

sample of user to rule out �nite size e�ects on the performance of

the clustered models and to include a larger temporal interval to

exclude from the analysis possible seasonal e�ects.

Future work will also involve the integration of the next POI pre-

diction into a real recommender of sequences of POIs for tourists.

Given the next most likely POI category, a short list of sorted POIs

belonging to that category will be retrieved from a knowledge

base containing places and events. �e short list will be computed

using entity2rec [23] leveraging user context (e.g. geographical

position), inherent venue peculiarities (e.g. ratings, reviews) and

user preferences.
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