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Abstract. More than 2 millions of new books are published every year
and choosing a good book among the huge amount of available options
can be a challenging endeavor. Recommender systems help in choosing
books by providing personalized suggestions based on the user reading
history. However, most book recommender systems are based on collab-
orative filtering, involving a long onboarding process that requires to
rate many books before providing good recommendations. Tinderbook
provides book recommendations, given a single book that the user likes,
through a card-based playful user interface that does not require an ac-
count creation. Tinderbook is strongly rooted in semantic technologies,
using the DBpedia knowledge graph to enrich book descriptions and
extending a hybrid state-of-the-art knowledge graph embeddings algo-
rithm to derive an item relatedness measure for cold start recommen-
dations. Tinderbook is publicly available4 and has already generated
interest in the public, involving passionate readers, students, librarians,
and researchers. The online evaluation shows that Tinderbook achieves
almost 50% of precision of the recommendations.

Keywords: recommender systems · books · knowledge graphs · DBpe-
dia · embeddings

1 Introduction

In recent years, the explosion of information available on the Web has made ever
more challenging the task of finding a good book to read. In 2010, the number
of books in the world was more than one hundred millions5 and approximately
2,210,000 new books are published every year6. At the same time, a survey shows
that in the US, a reader typically reads 4 books in one year7 and a study shows

4 http://www.tinderbook.it
5 https://www.telegraph.co.uk/technology/google/7930273/

Google-counts-total-number-of-books-in-the-world.html
6 https://en.wikipedia.org/wiki/Books_published_per_country_per_year
7 https://www.irisreading.com/how-many-books-does-the-average-person-read/

http://www.tinderbook.it
https://www.telegraph.co.uk/technology/google/7930273/Google-counts-total-number-of-books-in-the-world.html
https://www.telegraph.co.uk/technology/google/7930273/Google-counts-total-number-of-books-in-the-world.html
https://en.wikipedia.org/wiki/Books_published_per_country_per_year
https://www.irisreading.com/how-many-books-does-the-average-person-read/
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that most readers typically give up on a book in the early chapters8. These fig-
ures show the importance and the complexity of the process of selecting a book
to read among the enormous amount of available options. Recommender systems
(RS) have provided a great deal of help in this task, using algorithms that predict
how likely it is for a user to like a certain item, leveraging the history of the user
preferences. Most of the existing book recommender systems are typically based
on collaborative filtering, which suffers from the cold start problem [1], and are
thus based on long onboarding procedures, requiring users to log-in and to rate a
consistent number of books (Section 5). On the other hand, content-based recom-
mender systems suffer the risk of overspecialization, i.e. tend to recommend over
and over again similar types of items [14]. Hybrid recommender systems combine
the best of collaborative filtering and content-based similarity and are able to
provide good recommendations even when user ratings are few [1]. Knowledge
graphs provide an ideal data structure for such systems, as a consequence of
their ability of encompassing heterogeneous information, such as user-item in-
teractions and item-item relations in the same model. Besides, knowledge-aware
recommender systems have also the advantage of being able to naturally leverage
Linked Open Data [4], which provide a rich database of item descriptions and
model item-item relations with semantic properties [10].

In this paper, we describe Tinderbook, a book recommender system based
on knowledge graph embeddings that provides book recommendations given a
single book that the user likes. To achieve this, we extend a state-of-the-art
knowledge graph embeddings algorithm [15] to compute item-to-item recom-
mendations using a hybrid item relatedness measure. In Section 2, we describe
the recommendation algorithm, the dataset and the experimental validation of
the methodological choice. In Section 3, we provide a high-level description of the
TinderBook end-user application. In Section 4, we report the results obtained
during the online experiment with users. In Section 5, we compare TinderBook
with existing competing applications. In Section 6, we discuss the main findings
and lessons learned from the deployment of the application into a production
environment, as well as the future work and possible improvements of the appli-
cation.

2 Recommendation algorithm

2.1 Definitions

Definition 1 A knowledge graph is a set K = (E,R,O) where E is the set of
entities, R ⊂ E × Γ ×E is a set of typed relations between entities and O is an
ontology. The ontology O defines the set of relation types (‘properties’) Γ , the
set of entity types Λ, assigns entities to their type O : e ∈ E → Λ and entity
types to their related properties O : ε ∈ Λ→ Γε ⊂ Γ .

8 https://www.nytimes.com/2016/03/15/business/media/

moneyball-for-book-publishers-for-a-detailed-look-at-how-we-read.html

https://www.nytimes.com/2016/03/15/business/media/moneyball-for-book-publishers-for-a-detailed-look-at-how-we-read.html
https://www.nytimes.com/2016/03/15/business/media/moneyball-for-book-publishers-for-a-detailed-look-at-how-we-read.html
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Definition 2 Users are a subset of the entities of the knowledge graph, u ∈ U ⊂
E. Items are a subset of the entities of the knowledge graph, i ∈ I ⊂ E. Users
and items form disjoint sets, U ∩ I = ∅.

Definition 3 The property ‘feedback’ describes an observed positive feedback be-
tween a user and an item. Feedback only connects users and items, i.e. only
triples such as (u, feedback, i) where u ∈ U and i ∈ I can exist.

Definition 4 Given a user u ∈ U , the set of candidate items Icandidates(u) ⊂
I is the set of items that are taken into account as being potential object of
recommendation.

The problem of top-N item recommendation is that of selecting a set of N items
from a set of possible candidate items. Typically, the number of candidates is
order of magnitudes higher than N and the recommender system has to be
able to identify a short list of very relevant items for the user. The goal of the
Tinderbook application is that of recommending books to read, given a single
book that the user likes. In a more formal way, we need to define a measure of
item relatedness ρ(ij , ik) which estimates how likely it is that the user will like
the book ik, given that the user likes the book ij . The item relatedness ρ(ij , ik)
is used as a ranking function, i.e. to sort the candidate items ik ∈ Icandidates(u)
given the ‘seed’ item ij . Then, only the top N elements are selected and presented
to the user.

2.2 Approach

The approach to define the measure of item relatedness ρ(ij , ik) is based on
entity2rec [15]. entity2rec builds property-specific knowledge graph embeddings
applying node2vec [13] on property-specific subgraphs, computes user-item
property-specific relatedness scores and combines them in a global user-item
relatedness score that is used to provide top-N item recommendations. In this
work, we extend entity2rec to a cold start scenario, where user profiles are
not known and item-to-item recommendations are needed. To this end, we
apply entity2rec to generate property-specific knowledge graph embeddings, but
then, we focus on item-item relatedness, rather than on user-item relatedness.
Property-specific item-item relatedness scores are then averaged to obtain a
global item-item relatedness score that is used as a ranking function (Figure 1).
We define:

ρentity2rec(ij , ik) = avg(ρp(ij , ik)) (1)

where ρp(ij , ik) = cosine sim(xp(ij), xp(ik)) and xp is the property-specific
knowledge graph embedding obtained using node2vec on the property-specific
subgraph. We compare this measure of item relatedness with that of an
ItemKNN [20], which is a purely collaborative filtering system. The relatedness
between the items is high when they tend be liked by the same users. More
formally, we define:

ρitemknn(ij , ik) =
|Uj ∩ Uk|
|Uj ∪ Uk|

(2)
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Fig. 1. The knowledge graph represents user-item interactions through the special
property ‘feedback’, as well as item properties and relations to other entities. The
knowledge graph allows to model both collaborative and content-based interactions
between users and items. In this figure, ‘dbo:author’ and ‘dct:subject’ properties are
represented as an example, more properties are included in the experiments. Property-
specific subgraphs are created from the original knowledge graph. Property-specific
embeddings are computed, and property-specific item relatedness scores are computed
as cosine similarities in the vectors space. Finally, property-specific relatedness scores
are averaged to obtain a global item-item relatedness score.
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where Uj and Uk are the users who have liked item ij and ik respectively. We
also use as a baseline the MostPop approach, which always recommends the
top-N most popular items for any item ij . Finally, we compare entity2rec with a
measure of item relatedness based on knowledge graph embeddings built using
RDF2Vec [18]. RDF2Vec turns all DBpedia entities into vectors, including the
books that are items of the recommender system. Thus, we simply use as a
measure of item relatedness the cosine similarity between these vectors:

ρRDF2V ec(ij , ik) = cosine sim(RDF2V ec(ij), RDF2V ec(ik)) (3)

where RDF2V ec(ij) stands for the embedding of the item ij built using
RDF2Vec. Note that this is a purely content-based recommender such as the
one implemented in [19], as DBpedia does not contain user feedback.

2.3 Offline evaluation

The dataset used for the application and for the offline evaluation is Library-
Thing9, which contains 7,112 users, 37,231 books and 626,000 book ratings
ranging from 1 to 10. LibraryThing books have been mapped to their corre-
sponding DBpedia entities [8] and we leverage these publicly available mappings
to create the knowledge graph K using DBpedia data. As done in previous
work [17], we select a subset of properties of the DBpedia Ontology10 to create
the knowledge graph: [“dbo:author”, “dbo:publisher”, “dbo:literaryGenre”,
“dbo:mediaType”, “dbo:subsequentWork”,“dbo:previousWork”, “dbo:series”,
“dbo:country”, “dbo:language”, “dbo:coverArtist”, “dct:subject”]. We create
a ‘feedback’ edge between a user and a book node when the rating is r ≥ 8,
as done in previous work [8,17]. For the offline evaluation, we split the data
into a training Xtrain, validation Xval and test set Xtest containing, for each
user, respectively 70%, 10% and 20% of their ratings. Users with less than
10 ratings are removed from the dataset, as well as books that do not have a
corresponding entry in DBpedia. After the mapping and the data splitting, we
have 6,789 users (95.46%), 9,926 books (26.66%) and 410,199 ratings (65.53%).

We use the evaluation protocol known as AllUnratedItems [22], i.e. for each
user, we select as possible candidate items all the items present in the training
or in the test set that the user has not rated before in the training set:

Icandidates(u) = I \ {i ∈ Xtrain(u)} (4)

We use standard metrics such as precision (P@k) and recall (R@k) to evaluate
the ranking quality.

P(k) =
1

|U |
∑
u∈U

k∑
j=1

hit(ij , u)

k
(5)

9 https://www.librarything.com
10 https://wiki.dbpedia.org/services-resources/ontology

https://www.librarything.com
https://wiki.dbpedia.org/services-resources/ontology
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R(k) =
1

|U |
∑
u∈U

k∑
j=1

hit(ij , u)

|rel(u)|
(6)

where the value of hit is 1 if the recommended item i is relevant to user u (rating
r ≥ 8 in the test set), otherwise it is 0, rel(u) is the set of relevant items for user
u in the test set and ij are the top-k items that are recommended to u. Items
that are not appearing in the test set for user u are considered as a miss. This
is a pessimistic assumption, as users typically rate only a fraction of the items
they actually like and scores are to be considered as a worst-case estimate of the
real recommendation quality. In addition to these metrics, which are focused on
evaluating the accuracy of the recommendation, we also measure the serendip-
ity and the novelty of the recommendations. Serendipity can be defined as the
capability of identifying items that are both attractive and unexpected [12]. [11]
proposed to measure it by considering the precision of the recommended items
after having discarded the ones that are too obvious. Eq. 7 details how we com-
pute this metric. hit non pop is similar to hit, but top-k most popular items are
always counted as non-relevant, even if they are included in the test set of user u.
Popular items can be regarded as obvious because they are usually well-known
by most users.

SER(k) =
1

|U |
∑
u∈U

k∑
j=1

hit non pop(ij , u)

k
(7)

In contrast, the metric of novelty is designed to analyze if an algorithm is able to
suggest items that have a low probability of being already known by a user, as
they belong to the long-tail of the catalog. This metric was originally proposed
by [23] in order to support recommenders capable of helping users to discover
new items. We formalize how we computed it in Eq. 8. Note that this met-
ric, differently from the previous ones, does not consider the correctness of the
recommended items, but only their novelty.

NOV(k) = − 1

|U | × k
·
∑
u∈U

k∑
j=1

log2 Ptrain(ij) (8)

The function Ptrain : I → [0, 1] returns the fraction of feedback attributed to the
item i in the training set. This value represents the probability of observing a
certain item in the training set, that is the number of ratings related to that item
divided by the total number of ratings available. In order to avoid considering
as novel items that are not available in the training set, we consider log2(0)

.
= 0

by definition.
The offline experiment simulates the scenario in which the user selects a single

item he/she likes ij (so-called ‘seed’ book) and gets recommendations according
to an item-item relatedness function ρ(ij , ik), which ranks the candidate items
ik. We iterate through the users of the LibraryThing dataset, and for each user
we sample with uniform probability an item ij that he/she liked in the training
set. Then, we rank the candidate items ik ∈ Icandidates(u) using ρentity2rec(ij , ik),
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ρitemknn(ij , ik), ρRDF2V ec(ij , ik) and MostPopular, and we measure P@5, R@5,
SER@5, NOV@5. The results show that entity2rec obtains better precision, recall
and serendipity with respect to competing systems (Table 1).

Table 1. Results for different item-item relatedness measures. entity2rec provides more
accurate recommendations with respect to pure collaborative filtering such as ItemKNN
and to the Most Popular baseline. It also scores better with respect to the content-
based RDF2Vec, although RDF2Vec has the best novelty. Scores can be considered as
without error, as the standard deviation is negligible up to the reported precision.

System P@5 R@5 SER@5 NOV@5

entity2rec 0.0549 0.0508 0.0514 11.099

itemknn 0.0484 0.0472 0.0463 12.2

RDF2Vec 0.0315 0.0288 0.0311 13.913

mostpop 0.0343 0.0256 0.007 8.4525

3 Application

In this section, we describe the Tinderbook application.

3.1 Session

A complete usage session can be divided in two phases (Figure 2):

1. Onboarding: the user lands on the application and gets books that are
sampled with a chance that is proportional to the popularity of the book.
More in detail, a book is sampled according to:

p(book) ∼ P+(book)
1
T (9)

where P+ is the popularity of the book, which is defined as the fraction of
positive feedback (ratings r ≥ 8) obtained by the book in the LibraryThing
dataset. T is a parameter called “temperature” that governs the degree of
randomness in the sampling. T → 0 generates a rich-gets-richer effects, i.e.
most popular books become even more likely to appear in the extraction.
On the contrary, when T grows the distribution becomes more uniform, and
less popular books can appear more often in the sampling. The user has to
discard books (pressing “X” or swiping left on a mobile screen) until a liked
book is found. The user can get additional information about the book (e.g.
the book abstract from DBpedia) by pressing on the “Info” icon.

2. Recommendations: after the user has selected a book (“seed book”), she
receives five recommended books based on her choice, thanks to the item-
item relatedness ρentity2rec (see Section 2.2). The user can provide feedback
on the recommended books using the “thumbs up” and “thumbs down”
icons, or swiping right or left. The user can again get additional information
about the book (book abstract from DBpedia) by pressing on the “Info”
icon.
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1. ONBOARDING 2. RECOMMENDATIONS

The Zombie Survival Guide
Max Brooks

Fig. 2. A complete session of use of the application. The user selects a book that she
likes, gets book recommendations based on her choice and provides her feedback. User
can get info about the book by pressing on the “Info” icon.

The graphical user interface of Tinderbook aims to engage users using playful
interaction on popular like/dislike interaction [7]. The graphical representation of
cards and a slot-machine-like interaction engage the users into an infinite swipe
left and right loop as the popular Tinder interface [3]. We choose to adopt digital
cards interface for Tinderbook because it can be applied to a variety of contexts
and, combined with ubiquitous swipe gesture, can alleviate information overload
and improve the user experience aspect of apps11. Moreover, Tinderbook can
further leverage engagement data, i.e. each individual user-swipe interaction, to
get insights on users’ satisfaction in the usage of the application. The interactions
of the user with the application are described in Figure 3.

1. ONBOARDING

Users lands on the application. 
Server samples a set of popular 

items to select from.

3. RECOMMENDATIONS

User finds a liked book.
Server saves seed book in 

MongoDB and returns 
recommended books.

book URI
user_id

POSTGET
100 items Top 5 books

4. FEEDBACK

User judges the quality of the 
recommendations. 

Server saves user’s feedback 
in MongoDB.

book URI
book position
user feedback

user_id

POST

user_id

2. DISCARD

User discards books until a 
liked book is found. 

Server saves discarded 
books in MongoDB.

book URI
user_id

POST

‘ok’ ‘ok’

Fig. 3. Tinderbook interactions and corresponding API calls. In 1. ONBOARDING,
books are sampled with a chance proportional to their popularity, as described in
Eq. 9. In 2. DISCARD, the user goes through proposed books until he/she finds a
liked book. In 3. RECOMMENDATIONS, the user receives five book recommendations
related to his/her chosen book. In 4. FEEDBACK, the user judges the quality of the
recommendations.
11 https://www.nngroup.com/articles/cards-component/

https://www.nngroup.com/articles/cards-component/
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3.2 Architecture

The overall architecture is presented in Figure 4. DBpedia is the main data
source for the application. DBpedia is queried to get book title, author and
abstract. Google images is queried to retrieve thumbnails for images, using the
book title and author extracted from DBpedia to disambiguate the query. The
model is a key-value data structure that stores item-item similarities as defined
in Eq. 1 and it is used to get the five most similar books to the chosen book.
MongoDB is used to store the discarded books, seed books, and the feedback on
the recommended books (“thumbs up” or “thumbs down”), in order to evaluate
the application in the online scenario (Section 4). Book metadata are collected
once for all the books at the start of the server and kept in memory to allow
faster recommendations.

User Interface API
MongoDB

DBpedia

Model

Google

User

seed
discard

feedback

ρ (ij, ik)

Book 
cover

Book 
metadata

Fig. 4. The architecture of the Tinderbook application.

4 Online Evaluation

Tinderbook has been deployed on Nov 22nd, 2018. In this section, we report the
results of usage data collected for two weeks, going from Nov, 22nd to Dec, 6th

(Table 2). To evaluate the application, we have defined a set of Key Performance
Indicators (KPIs), which are specific to the online scenario, in addition to the
metrics defined in Section 2.2. In the online experiment, we define the recom-
mendation as a ‘hit’ if the user provides positive feedback (“thumb up” or swipe
right), and as a ‘miss’ if the user provides negative feedback (“thumb down”
or swipe left) in the recommendation phase. Recall cannot be measured in the
online experiment, as we do not have a test set to measure rel(u).

Definition 5 We define completeness as the average percentage of rated books
per session, given that the user has entered the recommendation phase.
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Definition 6 We define discard as the average number of discarded books in
the onboarding phase

Definition 7 We define dropout as the percentage of users who leave the ap-
plication during the onboarding phase

Definition 8 We define seed popularity as the average popularity of the seed
books

Definition 9 We define recommendation time τ as the average time required
to provide the list of recommended books in the recommendation phase

Table 2. Total usage stats for the online experiment for the whole experiment (22 Nov
- 6 Dec), for T = 0.3 configuration only (22nd, Nov - 29th, Nov) and for the T = 1.
configuration only (30th, Nov - 6th, Dec).

All T=0.3 T=1.

tot. # seeds 470 358 112

tot. # feedback 1,936 1495 441

tot. # discarded books 3,668 2263 1405

Fig. 5. Showing how different values of the temperature affect the popularity of the
books chosen as “seeds” for the recommendations in the onboarding phase. In both
cases, seeds are strongly concentrated among the most popular books. However, in the
case of T = 0.3 the effect is stronger, with all of the seeds falling into the top 20% most
popular books. In the case of T = 1., roughly 80% of the seed books fall into the top
20% most popular books.
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In the first week, we have experimented an onboarding phase with a tem-
perature parameter set to T = 0.3. In the second week, we have increased this
temperature to the value of T = 1. As described in Section 3, the temperature T
governs the degree of randomness in the popularity-driven book sampling of the
onboarding phase. The first effect observed as a consequence of the increase in
temperature in the onboarding phase was the fact that less popular books were
chosen during the onboarding phase. In Figure 5, we represent the distribution
of seed books falling in the top x% popular items for T = 0.3 and T = 1. The
picture shows that T = 1 has made less popular books appear more frequently
in the choices of the users in the onboarding phase with respect to the initial
configuration T = 0.3. However, it is worth noticing that most seed books are
still concentrated among the most popular books (80% in the top 20% popu-
lar books). The change of temperature has also had effects on the other KPIs.
In order to compare the two different onboarding configurations T = 0.3 and
T = 1., we have measured the KPIs mean values and standard deviations and
run a statistical test to assess whether the observed differences were statistically
significant or not. More specifically, we have run a Welch’s t-student test [24]
with a confidence value of α = 0.05, only p < α are considered as statistically
significant. As shown in Table 3, the onboarding configuration T = 1.0 decreases
the average popularity of the seed books in a statistically significant way. This
leads to the fact that users have to discard more items before finding a liked
book in the onboarding phase, as it can be noticed by the increase of the av-
erage number of discarded books. However, the number of dropouts does not
increase in a statistically significant way, meaning that we cannot say that this
fact is pushing users to get bored during the onboarding and leave the applica-
tion more easily. In fact, it shows that users are engaged enough to keep using
the application even if they have to discard more books in the onboarding. Inter-
estingly, the configuration with T = 1.0 is also increasing the novelty, meaning
that less popular books also appear more often in the recommendations. Over-
all, we can claim that T = 1.0 is the best configuration for the application, as it
leads to more novelty without significantly increasing the number of dropouts.

The recommendation time is very short, roughly 12 milliseconds, as it involves
accessing values from a key-value data store, which can be done in unitary time.
More specifically, we measure τ = 12.4± 0.3 ms across the whole experiment.

Table 3. Online evaluation results. KPIs for the T = 0.3 configuration only (22nd,
Nov - 29th, Nov) and for the T = 1. configuration only (30th, Nov - 6th, Dec). Welch’s
t-student test is used to compare the KPIs with a confidence value α = 0.05.

T = 0.3 T = 1. p value significant

P@5 0.497368 ± 0.026381 0.495833 ± 0.052701 9.79E-01 no

SER@5 0.417105 ± 0.024892 0.437500 ± 0.047382 7.07E-01 no

NOV@5 8.315443 ± 0.176832 10.095039 ± 0.347261 2.30E-05 yes

completeness 0.903947 ± 0.018229 0.937500 ± 0.025108 2.86E-01 no

discard 6.321229 ± 0.663185 12.544643 ± 2.070238 2.09E-03 yes

dropout 0.131285 ± 0.019150 0.178571 ± 0.039930 2.45E-01 no

seed pop 0.002626 ± 0.000060 0.000835 ± 0.000086 2.74E-48 yes
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5 Competing Systems

Existing book recommender systems are typically based either on content-based
or collaborative filtering [2]. In Figure 6, we report a comparison of TinderBook
with existing book recommender systems. The first point that makes TinderBook
stand out from competitors is the recommendation algorithm, a hybrid approach
based on knowledge graph embeddings. In the past years, several works have
shown the usefulness of knowledge graphs for recommender systems, and more
specifically, of Linked Open Data knowledge graphs [10]. More in detail, knowl-
edge graphs are often used to create hybrid recommender systems, including
both user-item and item-item interactions. For instance, in [9], the authors use
hybrid graph-based data model utilizing Linked Open Data to extract metapath-
based features that are fed into a learning to rank framework. Recently, some
works have used feature learning algorithms on knowledge graphs, i.e. knowl-
edge graph embeddings for recommender systems, reducing the effort of feature
engineering and resulting in high-quality recommendations [21,25,18,17,16]. In
particular, entity2rec [15], on which TinderBook is based, has shown to create
accurate recommendations using property-specific knowledge graph embeddings.

The second point that makes TinderBook stand out is the Graphical User
Interface (GUI) and the quick onboarding process, with no necessity of log-in
or account creation. Card-based GUI are a great way to deliver information
at a glance. Cards help avoid walls of text, which can appear intimidating or
time-consuming and allow users to deep dive into their interests quicker. Many
apps can benefit from a card-based interface that shows users enough necessary
information to make a quick maybe/no decision [5]. Cards serve as entry points
to more detailed information. According to Carrie Cousins, cards can contain
multiple elements within a design, but each should focus on only one bit of in-
formation or content [6]. A famous example of card-based GUI is that of the
dating application Tinder, and according to Babich: “Tinder is a great example
of how utilizing discovery mechanism to present the next option has driven the
app to emerge as one of the most popular mobile apps. This card-swiping mech-
anism is curiously addictive, because every single swipe is gathering information
- cards connect with users and offer the best possible options based on the made
decisions.” [3].

Finally, TinderBook leverages DBpedia [4] and this allows to leverage a
wealth of multi-language data, such as book descriptions, without the cost of
creating and maintaining a proprietary database.

6 Conclusions and Lessons Learned

In this paper, we have described TinderBook, a book recommender system
that addresses the “new user” problem using knowledge graph embeddings. The
knowledge graph is built using data from LibraryThing, containing book ratings
from users, and DBpedia. We have explained the methodological underpinnings
of the system, reporting an offline experiment showing that the entity2rec item
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Fig. 6. Comparison of existing book recommender systems.

relatedness based on knowledge graph embeddings is outperforming a purely
collaborative filtering algorithm (ItemKNN) as well as a purely content-based
system based on RDF2Vec. This is in line with the claim that hybrid recom-
mender systems typically outperform purely collaborative and content-based
systems. Then, we have provided a high-level description of the application,
showing the typical usage session, the architecture and how user interactions
are mapped to server API calls. We have reported the main findings of the
online evaluation with users, showing that providing less popular books in the
onboarding phase improves the application, increasing the novelty of the recom-
mendations while achieving almost 50% of precision. We have also discussed how
TinderBook stands out from competing systems, thanks to its recommendation
algorithm based on knowledge graph embeddings, its easy onboarding process
and its playful user interface.

Semantic technologies play a fundamental role in TinderBook. DBpedia has
allowed to create the knowledge graph for the recommendation algorithm, con-
necting books through links to common entities and complementing the col-
laborative information coming from LibraryThing ratings with content-based
information. Furthermore, DBpedia has enabled to obtain rich book descrip-
tions (e.g. abstract), without the cost of creating, curating and maintaining a
book database. The multilinguality of DBpedia will also be a great advantage
when, in the future, we will extend TinderBook to multiple languages. On the
other hand, using DBpedia data has some pitfalls. The first one is the data loss
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during the mapping, as only 11,694 out of a total of 37,231 books (31.409%)
in the LibraryThing dataset are mapped to DBpedia entities12. The second one
is that, in some cases, the information in DBpedia resulted to be inaccurate.
For example, during some preliminary tests, we have noticed that in many cases
the thumbnail reported in the ‘dbo:thumbnail’ property is far from ideal to
represent accurately the book (see Jurassic Park novel13), and we had to rely
on Google to find better book covers. The loss of coverage and the data quality
issues are relevant ones, and they open the question of whether the use of other
knowledge graphs might give better results. Finally, it has to be noted that in
our specific case, the cost of building the knowledge graph has been strongly
mitigated by the re-use of existing DBpedia mappings. The generalization of
this approach to a new dataset would require also this effort.

In spite of these challenges, users generally give positive feedback about the
application, saying that it is fun to use and that recommendations are accu-
rate. So far, it has been used by passionate readers, librarians, students and
researchers, and has been promoted through the personal network of its cre-
ators, word-of-mouth, as well as popular social media. Although we do not have
a precise number, we estimate that, only during the online evaluation of two
weeks, more than 100 users have used the application. Some of the complaints
that we have received from users is that recommendations lacked diversity or
novelty. Thus, we will keep gathering data from the application and as a future
work, we will try to improve other dimensions of the recommendation quality
such as the diversity and the novelty, as most of the work so far has been done
in optimizing the accuracy of the recommendations in an offline setting.
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