
Translational Models for Item Recommendation

Enrico Palumbo1,2,3, Giuseppe Rizzo1, Raphaël Troncy2, Elena Baralis3,
Michele Osella1 and Enrico Ferro1

1 ISMB, Italy,
{palumbo, giuseppe.rizzo, osella, ferro}@ismb.it

2 EURECOM, France,
raphael.troncy@eurecom.fr
3 Politecnico di Torino, Italy,
elena.baralis@polito.it

Abstract. Translational models have proven to be accurate and efficient
at learning entity and relation representations from knowledge graphs for
machine learning tasks such as knowledge graph completion. In the past
years, knowledge graphs have shown to be beneficial for recommender
systems, efficiently addressing paramount issues such as new items and
data sparsity. In this paper, we show that the item recommendation
problem can be seen as a specific case of knowledge graph completion
problem, where the “feedback” property, which connects users to items
that they like, has to be predicted. We empirically compare a set of
state-of-the-art knowledge graph embeddings algorithms on the task of
item recommendation on the Movielens 1M and on the LibraryThing
dataset. The results show that translational models outperform typical
baseline approaches based on collaborative filtering and popularity and
that the dimension of the embedding vector influences the accuracy of
the recommendations.

Keywords: Knowledge Graphs, Recommender Systems, Embedding,
Translational models

1 Introduction

Recommender systems are traditionally divided in two families: content-based
and collaborative filtering algorithms. Content-based algorithms recommend
items similar to the set of items that a user has liked in the past, considering
the item content, i.e. its metadata. On the other hand, collaborative filtering
algorithms look for users that are similar in terms of item preferences and
suggest to a user items that similar users have liked. Hybrid systems attempt to
put together the best of both worlds, by combining content-based filtering and
collaborative filtering [1]. Knowledge graphs provide an ideal data structure for
such systems, as a consequence of their ability of encompassing heterogeneous
information, such as user-item interactions and items’ relation with other
entities, at the same time. Recommender systems leveraging knowledge graphs
have shown to be competitive with state-of-the-art collaborative filtering and

2 Enrico Palumbo et al.

to efficiently address issues such as new items and data sparsity [24,16,6,17,18].
In recent years, a great deal of attention has been given to machine learning
algorithms able to learn entity and relation vector representations (‘em-
beddings’) from knowledge graphs for prediction tasks, such as knowledge
graph completion, triple classification, entity resolution [22]. More in detail,
translational models, which model relations between entities as translations in
a vector space, have shown to be quite accurate at these prediction tasks, while
being computationally efficient and scalable to large graphs [3,23,13].
In this paper, we show how translational models can be used to create hybrid
recommender systems leveraging knowledge graphs, we evaluate their accuracy
and we compare them empirically. More in detail, we address the following
research questions:

1. How can translational models for knowledge graph embeddings be used for
item recommendation?

2. How do they perform on two standard benchmark datasets and how do they
compare with collaborative filtering baselines?

3. How much is the performance affected by the hyper-parameters, such as the
embedding size?

We show that, when modelling users and items as entities of a knowledge graph,
the item recommendation problem can be seen as a specific case of knowledge
graph completion problem, where the “feedback” property has to be predicted.
Thus, we compare three popular translational models for knowledge graph em-
beddings (TransE [3], TransH [23], TransR [13]) on the problem of item recom-
mendation. The evaluation on the Movielens 1M and the LibraryThing dataset
shows that: 1) knowledge graph embeddings methods outperform SVD, a matrix
factorization collaborative filtering baseline, and the “Most Popular” baseline 2)
models such as TransE and TransH obtain better performance with respect to
TransR 3) the embedding size affects the accuracy of the recommendations, but
TransE performs better than competing methods on the Movielens1M dataset
for almost all metrics and dimensions d.

2 Related Work

Knowledge Graph Embeddings: the term knowledge graph embeddings
refer to vector representations of entities and/or relations that attempt to
preserve the structure and the semantics of the knowledge graph. Compre-
hensive surveys of machine learning algorithms used to learn features from
knowledge graphs are [14,22]. All methods attempt to describe the existing
triples in the knowledge graph by learning latent features according to some
modeling assumption. RESCAL [15] is a tensor factorization method that
explains triples via pairwise interactions of vector representations of entities;
NTN (Neural Tensor Network) is an expressive non-linear model that learns
representations using neural networks [20]; distance based models, such as the
Structured Embeddings (SE) [4], explain triples using a distance in the vector

Translational Models for Item Recommendation 3

space. Translational models are a special case of distance-based models that
model relations as translations in the vector space and score triples according
to a distance function. These models have shown to be computationally efficient
and accurate at the same time and are described more in detail Sec. 3, as they
are the object the paper.
Recommendations using knowledge graphs: in the past years, several
works have shown the effectiveness of external knowledge resources to enhance
the performance of recommender systems. In [24,6] the authors start from a
graph-based data model including user feedback and item properties to generate
personalized entity recommendations. In [16,17] a hybrid graph-based data
model is used leveraging Linked Open Data to extract metapath-based feature
that are fed into a learning to rank framework. In [19] the authors propose a
content-based recommender system that automatically learns item representa-
tions using a feature learning algorithm on a knowledge graph and show the
effectiveness of the learned representations in an Item-based K-Nearest Neighbor
method. In [18], the authors use property-specific knowledge graph embeddings
based on node2vec [10] and learning to rank to provide item recommendations.
In [25], the authors use knowledge graph embeddings considering structural
knowledge (e.g. triples), textual knowledge (e.g. abstract) and visual knowledge
(e.g. poster) to derive semantic representation of items for item recommendation.

3 Approach

In this paper, we introduce the definition of knowledge graph, we describe trans-
lational models, we show how the problem of item recommendation can be in-
terpreted as a knowledge graph completion problem and how a ranking function
for item recommendation can be derived from translational models (Fig. 1).

3.1 Knowledge Graph

We use the definition of knowledge graph given in [18]. A knowledge graph is
defined as a set K = (E,R,O) where E is the set of entities, R ⊂ ExΓxE is a
set of typed relations among entities, and O is an ontology, which defines the set
of relation types (‘properties’) Γ . Entities include users u ∈ U ⊂ E and items
i ∈ I ⊂ E \ U . An observed positive feedback between a user and an item4 is
described by a special property, which we name ‘feedback’. In this work, the
ontology O is represented by the DBpedia ontology [2].

3.2 Translational Models

In order to predict missing relations in a knowledge graph, most algorithms rely
on feature learning approaches that are able to map entities and relations into a

4 Movie ratings are given by users on a 1-5 scale, we assume r ≥ 4 to be a positive
rating.

4 Enrico Palumbo et al.

vector space, generating knowledge graph embeddings. In this work, we compare
the following models (known as “translational models”):

– TransE [3]: learns representations of entities and relations so that h+ l ≈ t
where (h, l, t) ∈ R is a triple. h is the ‘head’ entity, l is the relation and t is
the ‘tail’ entity. The score function for a triple is thus f(h, l, t) = D(h+ l, t)
where D is a distance function such as the L1 or the L2 norm.

– TransH [23]: first extension of TransE, enables entities to have different
representations when involved in different relations by projecting entities on
a hyperplane identified by the normal vector wl. The score function becomes:
f(h, l, t) = D(h⊥ + l, t⊥), where h⊥ = h − wT

l hwl and t⊥ = t − wT
l twl and

D is a distance function such as the L1 or the L2 norm.
– TransR [13]: enables entities and relations to be embedded in a separate

vector space through a matrix Ml associated to any relation l that performs
projections of vectors from entity to relation space. The score function is:
f(h, l, t) = D(hl + l, tl) where hl = hMl and tl = tMl and D is a distance
function such as the L1 or the L2 norm.

The models are trained through the minimization of a pairwise ranking loss
function L that measures the total difference between the scores of ‘positive
triples’ D+ and ‘negative triples’ D−, plus regularization terms such as the
margin γ and other constraints:

L =
∑

(h,l,t)∈D+

∑
(h′,l,t′)∈D−

max(0, γ + fl(h, t)− fl(h′, t′)) (1)

Positive triples D+ are triples of the knowledge graph K, whereas negative
triples D− are obtained by ‘corrupting’ positive triples replacing the head or tail
entities with other entities. Notice that this strategy can produce false negatives,
as knowledge graphs are known to be incomplete and missing triples can still be
valid facts. In order to reduce this risk, we adopt the strategy described in [23],
which considers non-uniform sampling probabilities depending on the type of
relation.

3.3 Item Recommendation

The problem of item recommendation is that of ranking a set of N candidate
items Icandidates ⊂ I according to what a user may like. More formally, the
problem consists in defining a ranking function ρ(u, i) that assigns a score to
any user-item pair (u, i) ∈ UxIcandidates and then sorting the items according to
ρ(u, i):

L(u) = {i1, i2, ..., iN} (2)

where ρ(u, i) > ρ(u, i+1) for any i = 1..N −1. The core idea of using knowledge
graph embeddings for item recommendation is that of using the negative score
assigned to a triple f(u, feedback, i) as the ranking function ρ(u, i) (Fig. 2).
Thus, the approach can be summarized as:

Translational Models for Item Recommendation 5

– Data splitting: define the set of users’ feedback X as a set of triples
(u, feedback, i). We split the set of triples X into a Xtrain and Xtest so
that X = Xtrain

⋃
Xtest.

– Training: learn the knowledge graph embeddings from K, which includes all
the triples in Xtrain as well as other triples describing item content (see how
the knowledge graph is built in Sec. 4.1), obtaining vector representations of
each e ∈ E and r ∈ R (including the ‘feedback’ property)

– Testing: for every u ∈ U , sort every i ∈ Icandidates according to the score
assigned to the triple (u, feedback, i) by the trained translational model
ρ(u, i) = −f(u, feedback, i)

Kill_Bill_Vol.2
Samuel_Jackson

JaneMark

Quentin_Tarantino

Taxi_Driver

Star_Wars_Ep.1

THE_AVENGERS

feedback?

Fig. 1: Recommending items as a knowledge graph completion problem

4 Experimental setup

4.1 Knowledge graph construction

The first dataset used for the comparison of the knowledge graph embeddings
methods is MovieLens 1M5. MovieLens 1M [11] is a well known dataset for the

5 https://grouplens.org/datasets/movielens/1m/

https://grouplens.org/datasets/movielens/1m/

6 Enrico Palumbo et al.

u

feedback

i

ρ(u,i) = - D(u, feedback, i)

(a)

u
dfeedback

i
ρ(u,i) = - D(u

丄
, dfeedback, i丄)

u
丄 i

丄

wfeedback

(b)

ufeedback

feedback

ifeedback

ρ(u,i) = - D(ufeedback, feedback, ifeedback)

u i

Mfeedback

Mfeedback

entity space relation space

(c)

Fig. 2: (a): in TransE, user, items and relations are embedded in the same
space and the ranking function is defined through the distance between the
u + feedback and i (b): in TransH, translations are performed on the hyper-
plane wfeedback and thus the ranking function is defined through the distance
between u⊥ + dfeedback and i⊥ (c): in TransR, entities and relations are embed-
ded in different vector spaces and thus the ranking function is defined through
the distance between ufeedback + feedback and ifeedback

Translational Models for Item Recommendation 7

evaluation of recommender systems and it contains 1,000,209 anonymous ratings
of approximately 3,900 movies made by 6,040 MovieLens users. MovieLens
1M items have been mapped to the corresponding DBpedia entities [17] and
we leverage these publicly available mappings to create the knowledge graph
K using DBpedia data. Since not every item in the Movielens data has a
corresponding DBpedia entity, after this mapping we have 948978 ratings,
from 6040 users on 3226 items. We split the data into a training Xtrain,
validation Xval and test set Xtest, containing, per each user, respectively
70%, 10% and 20% of the ratings. In order to select the most relevant
properties for the knowledge graph construction, we count what are the most
frequent properties used in DBpedia to describe the items in the Movielens1M
dataset and we sort them according to their frequency. We select a subset
of properties of the DBpedia Ontology6 to create the knowledge graph by
sorting them according to their frequency of occurrence and selecting the
first K so that the frequency of the K+1 property is less than 50% of the
previous one. We obtain: [“dbo:director”, “dbo:starring”, “dbo:distributor”,
“dbo:writer”,“dbo:musicComposer”, “dbo:producer”, “dbo:cinematography”,
“dbo:editing”]. In this way, we avoid to select a fixed number of properties
and we rely on the actual frequency of occurrence to determine the cut-off.
We also add “dct:subject” to the set of properties, as it provides an extremely
rich categorization of items. For each item property p, we include in K all the
triples (i, p, e) where i ∈ I and e ∈ E, e.g. (dbr:Pulp Fiction, dbo:director,
dbr:Quentin Tarantino). We finally add the ‘feedback’ property, modeling
all movie ratings that are r ≥ 4 in Xtrain as triples (u, feedback, i). The
second dataset used for the comparison is LibraryThing7, which contains book
ratings on a 1-10 scale. By using the same mappings [17] used for Movie-
lens1M, we obtain 410199 ratings, given by 6789 users to 9926 items linked to
DBpedia. The selected properties according to the strategy described above
are: [“dbo:author”, “dbo:publisher”, “dbo:literaryGenre”, “dbo:mediaType”,
“dbo:subsequentWork”,“dbo:previousWork”, “dbo:series”, “dbo:country”,
“dbo:language”, “dbo:coverArtist”, “dct:subject”]. We convert ratings into the
‘feedback’ property when r ≥ 8 and we apply the same data splitting procedure
as for the Movielens1M dataset. Datasets statistics are summarized in Tab. 1.
The sparsity of the ratings matrix ρr is defined as the ratio between the actual
ratings and the number of possible existing user-item interactions:

ρr =
T

|U ||I|
(3)

where T is the number of ratings, |U | is the number of users and |I| is the number
of items in the dataset. The sparsity of the knowledge graph ρk is defined as the
ratio between the number of existing edges and the number of possible existing
edges:

ρk =
M

N(N − 1)
(4)

6 https://wiki.dbpedia.org/services-resources/ontology
7 https://www.librarything.com

https://wiki.dbpedia.org/services-resources/ontology
https://www.librarything.com

8 Enrico Palumbo et al.

where M = |ExΓxE| is the number of edges and N = |E| is the number of
entities in the graph.

Dataset Type Ratings Users Items ρr P N M ρk
Movielens1M Film 948976 6040 3226 95.130 10 29166 465338 99.945

LibraryThing Book 410199 6789 9926 99.391 12 35768 283967 99.978

Table 1: Datasets stats. ρr represents the sparsity of the ratings matrix, P the
number of distinct properties in the knowledge graph, N the number of nodes in
the graph, M the number of edges in the graph, ρk is the sparsity of the graph.

4.2 Evaluation

We use the evaluation protocol known as AllUnratedItems [21], i.e. for each user
we select as possible candidate items all the items either in the training or in
the test set that he or she has not rated before in the training set. Items that
are not appearing in test set are considered as negative examples, which is a
pessimistic assumption, as users may actually like items that they have not seen
yet. Scores are thus to be considered as a worst-case estimate of the real recom-
mendation quality that would derive from an online recommendation scenario.
We measure standard information retrieval metrics such as P@5, P@10, Mean
Average Precision (MAP), NDCG (Normalized Discounted Cumulative Gain) to
assess the quality of the ranking function. In addition to these precision-focused
metrics, we also measure the serendipity of the recommendations. Serendipity
can be defined as the capability of identifying items that are both attractive and
unexpected [9]. Ge et al. proposed to measure it by considering the precision of
the recommended items after having discarded the ones that are too obvious [8].
Eq. 5 details how we compute this metric. The value of hit is 1 if the recom-
mended item i is relevant to user u, otherwise it is 0. Differently from the metric
of precision, we consider the top-k most popular items always as non-relevant,
even if they are included in the test set of user u. Popular items can be regarded
as obvious because they are well-known by many users.

SER(k) =
1

|U | × k
∑
u∈U

k∑
j=1

hit(ij , u) (5)

As baselines, we use state-of-the-art collaborative filtering algorithms based on
Singular Value Decomposition [12] and the Most Popular Items recommendation
strategy, which simply ranks items based on their popularity (i.e. number of pos-
itive ratings). All the baselines have been trained on the user ratings contained

Translational Models for Item Recommendation 9

in Xtrain in the original matrix format and tested on Xtest. The baselines are im-
plemented using the surprise python library8. The implementation of the trans-
lational based embeddings9 and the script used to compare them10 are publicly
available on Github. The models are compared using default hyper-parameters:
d = 100, k = 100 (TransR), learning rate = 0.001, γ = 1, epochs = 1000.

5 Results

5.1 Empirical comparison of translational models

In this section, we empirically compare translational models for item recommen-
dation. The results of the evaluation on the Movielens 1M are reported in Tab. 2.
The results show that all knowledge graph embeddings algorithms significantly
outperform baselines such as SVD, MostPop and Random. At the same time,
we observe that the MostPop baseline, although trivial, is able to achieve very
good results, outperforming the SVD method. Note that the MostPop is known
to be quite effective on MovieLens due to the power-law distribution of user
feedback data, i.e. to the fact that most user ratings tend to be concentrated on
few very popular items [7]. TransE and TransH obtain the best scores for item
recommendations on the Movielens1M dataset. In particular, TransE is the best
performing method among translational models, showing that, for the case of
Movielens 1M, a simple model with fewer parameters to learn is more effective
than more complex ones such as TransR and even TransH. For LibraryThing
(Tab. 3), where the graph and ratings are sparser, TransH obtains the best
scores, but TransE still outperforms TransR. We also observe that the MostPop
and SVD are much less effective on LibraryThing, which is significantly sparser
than Movielens1M in terms of ρr (Tab. 1).

System P@5 P@10 MAP R@5 R@10 NDCG SER@5 SER@10

TransE 0.201424 0.175066 0.13912 0.079105 0.130375 0.466307 0.195099 0.163758

TransH 0.200132 0.173493 0.136114 0.077194 0.12898 0.463236 0.191987 0.159172

TransR 0.186424 0.161325 0.127131 0.073067 0.123122 0.454165 0.182185 0.151258

MostPop 0.144603 0.129156 0.092103 0.049231 0.084936 0.406294 0.064669 0.053692

SVD 0.067814 0.0624 0.04267 0.02021 0.037233 0.328776 0.059238 0.047202

Random 0.005762 0.005861 0.008381 0.001456 0.003241 0.245982 0.005629 0.005579

Table 2: Comparison of knowledge graph embeddings and collaborative filtering
algorithms on the Movielens1M dataset

8 http://surprise.readthedocs.io/en/v1.0.2/matrix_factorization.html
9 https://github.com/thunlp/KB2E

10 https://github.com/D2KLab/entity2rec/blob/dev/entity2rec/trans_

recommender.py

http://surprise.readthedocs.io/en/v1.0.2/matrix_factorization.html
https://github.com/thunlp/KB2E
https://github.com/D2KLab/entity2rec/blob/dev/entity2rec/trans_recommender.py
https://github.com/D2KLab/entity2rec/blob/dev/entity2rec/trans_recommender.py

10 Enrico Palumbo et al.

System P@5 P@10 MAP R@5 R@10 NDCG SER@5 SER@10

TransH 0.10411 0.082781 0.071303 0.063403 0.095078 0.335357 0.101576 0.07873

TransE 0.097187 0.079054 0.067255 0.059799 0.09194 0.329329 0.094388 0.075357

TransR 0.07739 0.06484 0.054964 0.04585 0.072106 0.312535 0.074768 0.061246

MostPop 0.034261 0.029872 0.028128 0.025619 0.04302 0.237088 0.006982 0.005583

SVD 0.012019 0.010149 0.01085 0.010236 0.016683 0.188468 0.009368 0.006864

Random 0.000648 0.000604 0.001665 0.000354 0.000791 0.155435 0.000619 0.000574

Table 3: Comparison of knowledge graph embeddings and collaborative filtering
algorithms on the LibraryThing dataset

5.2 Embedding dimension

In this section, we study how the quality of the recommendations varies as we
vary the dimension of the embedding vector d. For TransR, we keep the dimen-
sion of the relation space k = d, as in the default configuration. We conduct
the experiment on the Movielens 1M dataset. As we can see from Tab. 4, the
best performance is achieved by TransE when d = 50, which is slightly better
than the default configuration d = 100 for all metrics under consideration ex-
cept for SER@10. In general, TransE appears to perform better than the other
approaches for all values of d, except for d = 20 where all the models have very
similar performance and where for some metrics (e.g. R@5 and R@10) TransR
seems to perform slightly better. To better compare the models, in Fig. 3 we de-
pict the evolution of the NDCG as a function of d for the translational models.
We observe that when d = 20 the models have very similar performance, but in
general TransE performs better than TransH and TransR for most values of d. It
is also interesting to notice that there is large gap between TransE and the other
two methods when d = 10, showing that a simpler model can obtain significantly
better results when the number of features is small. The peak performance varies:
TransE has its peak when d = 50, whereas TransH and TransR when d = 100.
For all models, it seems a good strategy to not increase d over 100. In general,
the default configuration of d = 100 appears to be justified and sensible, but the
picture shows that tuning the embedding dimension parameter to generate item
recommendations can still improve the performance in some cases. We leave as
future work the study of the importance of other hyper-parameters such as the
learning rate or the margin γ of the loss function.

Translational Models for Item Recommendation 11

Model d P@5 P@10 MAP R@5 R@10 NDCG SER@5 SER@10

TransE 10 0.093444 0.08904 0.068161 0.020198 0.039709 0.366541 0.091556 0.085083

TransH 10 0.002649 0.003874 0.029036 0.000473 0.001633 0.303868 0.002649 0.003825

TransR 10 0.018212 0.021589 0.024472 0.005329 0.013912 0.297924 0.018212 0.021589

TransE 20 0.159172 0.144917 0.110341 0.050229 0.091037 0.429045 0.151854 0.132103

TransH 20 0.151854 0.139007 0.106262 0.050553 0.090665 0.425542 0.14394 0.125728

TransR 20 0.15149 0.138808 0.108588 0.052173 0.093729 0.428234 0.148841 0.132815

TransE 30 0.188609 0.168245 0.128919 0.06693 0.117108 0.452667 0.176689 0.150414

TransH 30 0.185728 0.165877 0.126865 0.06692 0.115647 0.4504 0.173377 0.148709

TransR 30 0.175728 0.154272 0.120587 0.062922 0.109542 0.44422 0.169272 0.142616

TransE 50 0.207053 0.179834 0.143832 0.081219 0.134856 0.471388 0.195828 0.163411

TransH 50 0.192715 0.168891 0.13259 0.072662 0.122104 0.458386 0.183808 0.155298

TransR 50 0.173709 0.152384 0.118384 0.066293 0.113591 0.442525 0.166589 0.14149

TransE 100 0.201424 0.175066 0.13912 0.079105 0.130375 0.466307 0.195099 0.163758

TransH 100 0.200132 0.173493 0.136114 0.077194 0.12898 0.463236 0.191987 0.159172

TransR 100 0.186424 0.161325 0.127131 0.073067 0.123122 0.454165 0.182185 0.151258

TransE 200 0.174272 0.152616 0.118552 0.067019 0.108311 0.443624 0.170861 0.143262

TransH 200 0.169768 0.146722 0.11241 0.062785 0.100185 0.436909 0.161689 0.133858

TransR 200 0.145232 0.10856 0.107458 0.062646 0.098634 0.430513 0.143311 0.102401

Table 4: Translational models performance on the Movielens 1M dataset as a
function of the embedding dimension d.

0.30

0.35

0.40

0.45

10 20 30 50 100 200

d

Model

TransE

TransH

TransR

Fig. 3: NDCG of translational models on the Movielens 1M dataset as a function
of the embedding dimension d

12 Enrico Palumbo et al.

6 Conclusions

In this work, we have described the application of translational models for item
recommendation, addressing the following research questions:
1) How can translational models for knowledge graph embeddings be used for
item recommendation?
Item recommendation can be interpreted as a knowledge graph completion prob-
lem, where a special property called ‘feedback’, modeling users preferences for
items, has to be predicted. More precisely, translational models can be used to
learn knowledge graph embeddings and to score triples to ‘complete’ the knowl-
edge graph by predicting the feedback property. The score assigned to triples
(u, feedback, i) defines a ranking function to perform item recommendation.
2) How do they perform on two standard benchmark datasets and how do they
compare with collaborative filtering baselines?
We have evaluated the translational models on the Movielens 1M and the Li-
braryThing datasets, comparing them to SVD and MostPop observing that: 1)
knowledge graph embeddings algorithms outperform traditional collaborative
filtering algorithms such as SVD for item recommendation 2) TransE performs
better for Movielens1M, whereas TransH has a better accuracy for LibraryThing.
TransR, albeit being more complex, has in general a worse performance, except
for some specific configurations of the embeddings size and some metrics in which
it performs slightly better than the others (d = 20 and recall metrics)
3) How much is the performance affected by the hyper-parameters, such as the
embedding size?
The embedding size affects the accuracy of the recommendations, but TransE
seems better than the other approaches consistently for almost all values of d
under consideration and to preserve its quality even with very small sizes such
as d = 10.
In a future work, we plan to extend this evaluation to other datasets using
implicit feedback such as LastFM [5], to include in the evaluation other ex-
isting recommender systems based on knowledge graphs such as Sprank [17],
RDF2Vec [19] or entity2rec [18], to take into account specific collaborative fil-
tering issues such as new items and data sparsity, perform exhaustive search and
optimization of the hyper-parameters of the models and to account for multiple
possible interactions between users and items.

Translational Models for Item Recommendation 13

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE transactions
on knowledge and data engineering 17(6), 734–749 (2005)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer
(2007)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in neural information
processing systems. pp. 2787–2795 (2013)

4. Bordes, A., Weston, J., Collobert, R., Bengio, Y., et al.: Learning structured em-
beddings of knowledge bases. In: AAAI. vol. 6, p. 6 (2011)

5. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogene-
ity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th
ACM conference on Recommender systems. RecSys 2011, ACM, New York, NY,
USA (2011)

6. Catherine, R., Cohen, W.: Personalized recommendations using knowledge graphs:
A probabilistic logic programming approach. In: Proceedings of the 10th ACM
Conference on Recommender Systems. pp. 325–332. ACM (2016)

7. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: Proceedings of the fourth ACM conference on
Recommender systems. pp. 39–46. ACM (2010)

8. Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: Evaluating recom-
mender systems by coverage and serendipity. In: Proceedings of the fourth ACM
conference on Recommender Systems. pp. 257–260. ACM Press (2010)

9. de Gemmis, M., Lops, P., Semeraro, G., Musto, C.: An investigation on the
serendipity problem in recommender systems. Information Processing & Manage-
ment 51(5), 695–717 (2015)

10. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. pp. 855–864. ACM (2016)

11. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS) 5(4), 19 (2016)

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8) (2009)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI. vol. 15, pp. 2181–2187 (2015)

14. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016)

15. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML. vol. 11, pp. 809–816 (2011)

16. Noia, T.D., Ostuni, V.C., Tomeo, P., Sciascio, E.D.: Sprank: Semantic path-based
ranking for top-n recommendations using linked open data. ACM Transactions on
Intelligent Systems and Technology (TIST) 8(1), 9 (2016)

17. Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations
from implicit feedback leveraging linked open data. In: Proceedings of the 7th
ACM conference on Recommender systems. pp. 85–92. ACM (2013)

18. Palumbo, E., Rizzo, G., Troncy, R.: Entity2rec: Learning user-item relatedness
from knowledge graphs for top-n item recommendation. In: Proceedings of the
Eleventh ACM Conference on Recommender Systems. pp. 32–36. ACM (2017)

14 Enrico Palumbo et al.

19. Rosati, J., Ristoski, P., Di Noia, T., Leone, R.d., Paulheim, H.: Rdf graph embed-
dings for content-based recommender systems. In: CEUR workshop proceedings.
vol. 1673, pp. 23–30. RWTH (2016)

20. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in neural information process-
ing systems. pp. 926–934 (2013)

21. Steck, H.: Evaluation of recommendations: rating-prediction and ranking. In: Pro-
ceedings of the 7th ACM conference on Recommender systems. pp. 213–220. ACM
(2013)

22. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engi-
neering 29(12), 2724–2743 (2017)

23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI. vol. 14, pp. 1112–1119 (2014)

24. Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han,
J.: Personalized entity recommendation: A heterogeneous information network ap-
proach. In: Proceedings of the 7th ACM international conference on Web search
and data mining. pp. 283–292. ACM (2014)

25. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base
embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. pp. 353–362.
ACM (2016)

	Translational Models for Item Recommendation

