
entity2rec: Learning User-Item Relatedness from Knowledge
Graphs for Top-N Item Recommendation

Enrico Palumbo
ISMB

Turin, Italy
EURECOM

Sophia Antipolis, France
palumbo@ismb.it

Giuseppe Rizzo
ISMB

Turin, Italy
giuseppe.rizzo@ismb.it

Raphaël Troncy
EURECOM

Sophia Antipolis, France
raphael.troncy@eurecom.fr

ABSTRACT
Knowledge Graphs have proven to be extremely valuable to rec-
ommender systems, as they enable hybrid graph-based recommen-
dation models encompassing both collaborative and content infor-
mation. Leveraging this wealth of heterogeneous information for
top-N item recommendation is a challenging task, as it requires the
ability of e�ectively encoding a diversity of semantic relations and
connectivity pa�erns. In this work, we propose entity2rec, a novel
approach to learning user-item relatedness from knowledge graphs
for top-N item recommendation. We start from a knowledge graph
modeling user-item and item-item relations and we learn property-
speci�c vector representations of users and items applying neural
language models on the network. �ese representations are used
to create property-speci�c user-item relatedness features, which
are in turn fed into learning to rank algorithms to learn a global
relatedness model that optimizes top-N item recommendations. We
evaluate the proposed approach in terms of ranking quality on
the MovieLens 1M dataset, outperforming a number of state-of-
the-art recommender systems, and we assess the importance of
property-speci�c relatedness scores on the overall ranking quality.

KEYWORDS
hybrid recommender system, node2vec, knowledge graph embed-
dings, knowledge graph, neural language models, word2vec, learn-
ing to rank, linked open data

1 INTRODUCTION
In the last years, research on recommender systems has shown
that knowledge graphs are bene�cial for hybrid recommender sys-
tems, achieving high ranking quality and e�ectively tackling typi-
cal problems of collaborative systems such as data sparsity or new
items [5, 28]. A line of work focuses on Linked Open Data knowl-
edge graphs [3], which represent a wealth of freely available multi-
domain ontological knowledge and have successfully been used in
the past to build recommender systems [7–9, 13]. �e crucial point
to leverage knowledge graphs to perform item recommendations
is to be able to e�ectively model user-item relatedness from this
rich heterogeneous network. To this end, it is highly desirable to
opt for approaches that are able to automatically learn user and
item representations from an optimization problem on this graph of
interactions, minimizing the time-consuming endeavour of feature
engineering and leading to be�er performance [2]. At the same
time, it is also bene�cial to use a recommendation model whose
features have a straight forward interpretation and that can thus

be easily adapted to a speci�c recommendation problem. Last year,
node2vec, a new approach to e�ectively perform feature learning
from networks, which combines a �exible random walk strategy
with the power of neural language models, has been proposed [11].
However, this approach is not tailored to knowledge graphs, as
it does not distinguish among types of entities and of relations,
and has never been applied to address recommendation problems.
Starting from this work, in this paper, we introduce entity2rec1, a
novel approach to measure user-item relatedness for top-N item
recommendation. �e contributions of the proposed work can be
summarized as follows: (a) we use a knowledge graph encompass-
ing both collaborative information from user feedback and item
information from Linked Open Data; (b) we learn property-speci�c
vector representations of knowledge graph entities in a completely
unsupervised way via node2vec; (c) we compute property-speci�c
relatedness scores between users and items using the obtained
vector representations; (d) we combine the property-speci�c re-
latedness scores in a global relatedness score using a supervised
learning to rank approach optimizing top-N item recommendation;
(e) we evaluate the e�ectiveness of the proposed approach with
respect to four baselines; (f) we remark that, thanks to the explicit
semantics of the properties of the knowledge graph, the model
is easily adaptable to speci�c recommendation problems, as the
features have a clear interpretation.

2 RELATEDWORK
Recommendations using knowledge graphs: in the past years,
several works have shown the e�ectiveness of external knowledge
resources to enhance the performance of recommender systems.
In [5, 28] the authors start from a graph-based data model encom-
passing both user feedback and item relations to generate person-
alized entity recommendations. In [19, 20] the authors adopt a
hybrid graph-based data model utilizing Linked Open Data to ex-
tract metapath-based feature that are fed into a learning to rank
framework. In [24] the authors propose a content-based recom-
mender system that automatically learns item representations using
a feature learning algorithm on a knowledge graph and show the
e�ectiveness of the learned representations in an Item-based K-
Nearest Neighbor method.

1h�ps://github.com/MultimediaSemantics/entity2rec

https://github.com/MultimediaSemantics/entity2rec

Feature learning from networks: feature learning from net-
works is a fundamental step in node and edge classi�cation. Re-
cently, some models have adapted neural language models to net-
works, resulting in very e�ective feature learning processes. In gen-
eral, it has been shown that these methods tend to work be�er than
other dimensionality reduction techniques based on matrix factor-
ization approaches [11]. In Deep Walk [21], the authors learn node
representations by simulating random walks on a graph, generat-
ing sequences that are successively processed by a neural language
model. In [11], the authors propose node2vec, an improvement over
Deep Walk, as it adopts a more �exible and sophisticated random
walk exploration strategy.
Learning to rank: learning to rank consists in applying machine
learning algorithms to learn a ranking function from training data.
In this work, we focus on listwise methods, i.e. learning algo-
rithms that are able to directly optimize ranking accuracy met-
rics from training data. More in detail, we use Adarank [27] and
LambdaMart [4]. Adarank is based on boosting, weak learners are
iteratively trained to correct the errors of the previous iteration
and �nally combined together in a linear model. Adarank avoids
the problem of the discontinuity of ranking accuracy metrics by
optimizing an upper bound of the actual loss function. LambdaMart
is the combination of LambdaRank and the boosted tree method
MART [10]. �e key idea is to optimize the loss function by directly
modeling its gradients estimates with respect to the model scores.

3 APPROACH
3.1 Knowledge Graph
In this work, a knowledge graph is de�ned as a set K = (E,R,O)
where E is the set of entities, R ⊂ ExΓxE is a set of typed relations
between entities and O is an ontology. �e ontology O de�nes
the set of relation types (‘properties’) Γ, the set of entity types Λ,
assigns entities to their typeO : e ∈ E → Λ and entity types to their
related propertiesO : ϵ ∈ Λ→ Γϵ ⊂ Γ. Knowledge graph edges are
thus triples (i,p, j) ∈ R where i ∈ E and j ∈ E are entities and p ∈ Γ
is a property. In our model, entities include users u ∈ U ⊂ E and
items i ∈ I ⊂ E \U . An observed positive feedback between a user
and an item (rating r ≥ 4 in this work) is described by a property
not de�ned by the ontology O , which we name ‘feedback’. �us,
p ∈ Γ+ϵ = Γϵ ∪ ‘f eedback ′. �roughout this work, the ontology O
is represented by the DBpedia ontology [1] and we deal with items
of the type ϵ =‘dbo:Film’. �e properties Γdbo:F ilm related to an
entity of the type ‘Film’ are available online2.

3.2 Property-speci�c user-item relatedness
As mentioned in Sec. 1, node2vec [11] has recently shown to be
particularly e�ective at learning vectorial node representations. In
a nutshell, node2vec works by simulating a random walk on the
graph, generating sequences of nodes, which are then fed into a neu-
ral language model (word2vec [18]) as if they were ‘sentences’ of a
document to learn vector representations of the nodes. From these
representations, the relatedness between two nodes can easily be
computed using vector similarity measures. However, in a knowl-
edge graph di�erent properties have di�erent semantic values and

2h�p://mappings.dbpedia.org/server/ontology/classes/Film

feedback

Kill_Bill_Vol.2
director

Quentin_Tarantino

The_Hateful_Eight

starring

Samuel_L._Jackson

Flubber

starring
Robin_Williams

Mrs._Doubtfire

Jane

Mark

Emma

Jane

Mark

Emma

Mrs._Doubtfire

Flubber

Kill_Bil_Vol.2

The_Hateful_Eight

Robin_Williams

Flubber

xfeedback

xstarring
Samuel_L._Jackson

ρfeedback(u,i)

ρstarring(u,i)

director

starring

feedback

feedback

feedback

feedback

Kill_Bil_Vol.2

Mrs._DoubtfireThe_Hateful_Eight

starring
feedback

feedback

Figure 1: Starting from the knowledge graph K, which con-
tains users (black), items (orange) and other entities (grey),
for each property, we generate vector representations xp
with node2vec. �e vector representations encode the struc-
ture of the graph. For p = ‘feedback’, we encode collabora-
tive information, users and items aremapped close together
in vector space according to their interactions and the relat-
edness ρf eedback (u, i) can be computed directly. For other
properties, such asp = ‘starring’, we encode content informa-
tion, items with similar starring actors are embedded close
together. �e relatedness ρstarr inд(u, i) has to be computed
by averaging the distance from items i ′ liked byu in the past.

should have di�erent weights in judging the relatedness between
two entities. Films can be related in terms of starring actors and not
in terms of subject, share the same director but not the same writer,
and processing the whole knowledge graph altogether neglecting
the semantics of the properties would not allow to account for this.
�us, we start by learning property-speci�c vector representation
of nodes considering one property at the time. For each property
p ∈ Γ+ϵ , we de�ne a subgraph Kp as the set of entities connected by
the propertyp, i.e. the triples (i,p, j). Note that for properties where
each entity is connected to more than one entity (e.g. ‘starring’ or
‘feedback’), Kp can exhibit complex connectivity pa�erns. �en,
for each Kp independently, we learn a mapping xp : e ∈ Kp → Rd ,
optimizing the node2vec objective function [11]:

max
xp

∑
e ∈Kp
(− logZe +

∑
ni ∈N (e)

xp (ni) · xp (e)) (1)

whereZe =
∑
v ∈Kp exp(xp (e)·xp (v)) is the per-node partition func-

tion and is approximated using negative sampling [18], N (e) ∈ Kp
is the neighborhood of the entity e de�ned by the node2vec random
walk and the optimization is carried out using stochastic gradient
ascent over the parameters de�ning xp . �e optimization a�empts
to maximize the dot product between vectors of the same neigh-
borhood, i.e. to embed them close together in vector space. �us,
from the vector representations xp (e), property-speci�c relatedness
scores can be de�ned as follows:

ρp (u, i) =
{
s(xp (u),xp (i)) i f p = ‘f eedback ′

1
|R+(u) |

∑
i′∈R+(u) s(xp (i),xp (i

′)) otherwise

2

http://mappings.dbpedia.org/server/ontology/classes/Film

where R+(u) denotes a set of items liked by the user u in the past
and s denotes a measure of vector similarity (in this work s = cosine
similarity). �e features include both collaborative and content
information and have a straight-forward interpretation (Fig. 1).
When considering p = ‘feedback’, K is reduced to the graph of user-
item interactions and thus ρf eedback (u, i) models collaborative
�ltering. ρf eedback (u, i) will be high when xf eedback (u) is close
to the item xf eedback (i) in vector space, i.e. when i has been
liked by users who have liked the same items of u in the past
and are thus tightly connected in the Kf eedback graph. On the
other hand, when p corresponds to other properties of the ontology
O the features encode content information. For instance, if p is
‘starring’, ρstarr inд(u, i)will be high if xstarr inд(i) is close to items
xstarr inд(i ′), i.e. when i shares starring actors with items that the
user u has liked in the past. �e hybrid approach is able to tackle
the ‘new item’ issue, as for a new item with no feedback from users,
we are still able to compute all the content-based features. For a
new user u, the scores ρp (u, i) can be computed by averaging the
ρp (u ′, i) over all the other users u ′ ∈ U .

3.3 Global user-item relatedness
For each user-item pair, we are now able to compute all property-
speci�c relatedness scores ®ρ(u, i) = {ρp (u, i)}p∈Γ+ϵ . We aim to use
these scores as features of a global user-item relatedness model
that can be used to provide item recommendation. To this end, we
de�ne the global user-item relatedness ρ(u, i;θ) = f (®ρ(u, i);θ) as
a function f of the property-speci�c scores ®ρ(u, i) and of a set of
parameters θ . �e key idea is that of �nding the parameters θ that
optimize top-N item recommendation as a supervised learning to
rank problem [16].
Training data: given a set of usersU = {u1,u2..uN }, each user uk
is associated with a set of items from feedback data ®ik = {ik1, ik2..ikn(k)}
where n(k) denotes the number of feedback released by the user
uk and a set of labels ®yk = {yk1,yk2..ykn(k)} denoting the ground
truth relevance of items ®ik (e.g. ratings with explicit feedback or
boolean values with implicit feedback). �e training set is thus
represented as T = {(uk , ®ik , ®yk)Nk=1}.
Ranking function: ρ(u, i;θ) is a ranking function, meaning that,
for each useruk , the corresponding items ®ik are sorted according to
its score. More formally, ρ(u, i;θ) induces a permutation of integers
π (uk , ®ik ,θ), corresponding to sorting the list of items ®ik according
its score.
Loss: the agreement M(π (uk , ®ik ,θ), ®yk) between the permutation
π (uk , ®ik ,θ) induced by ρ(u, i;θ) and the list of ground truth rele-
vance of items ®yk can be measured by any information retrieval
metric that measures ranking accuracy, such as P@N , Mean Aver-
age Precision (MAP), NDCG [22]. From this score, a loss function
can be easily derived as:

C(θ) =
N∑
k=1
(1 −M(π (uk , ®ik ,θ)) (2)

Optimization: the learning process has thus the objective of �nd-
ing the set of parameters θ that minimize the loss function C over
the training data:

θ̂ = arg min
θ

C(θ) (3)

�e exact form of f , of the loss function C , the set of parameters
θ to optimize and the approach used to optimize the loss function
depend on the learning to rank algorithm and on the metrics that are
optimized. In this work, we use Adarank [27] and LambdaMart [27]
as ranking algorithms and we measure P@N and MAP [22].

4 EXPERIMENTAL SETUP
Dataset: the dataset used for the evaluation of the proposed ap-
proach is MovieLens 1M3. MovieLens 1M [12] is a popular dataset
for the evaluation of recommender systems and it contains 1,000,209
anonymous ratings of approximately 3,900 movies made by 6,040
MovieLens users. In a previous work [20], MovieLens 1M items
have been mapped to the corresponding DBpedia entities. We lever-
age these publicly available mappings to make use of Linked Open
Data in building the knowledge graph K. Since not every item in
the Movielens data has a corresponding DBpedia entity, a�er this
mapping we have 948978 ratings, from 6040 users on 3226 items.
Con�guration: �rst, we de�ne the set of properties p for which
the features have to be computed. We start from the properties
associated to the class ‘Film’ by the DBpedia ontology Γdbo:F ilm
and to this set we add ‘dct:subject’, which relates an entity to a
set of possible categories, such as ‘American Films‘. For each of
these properties, we obtain the subgraph Kp through SPARQL [23]
queries. �e properties for which we obtain a su�cient number of
triples (> 15) are those reported in Tab. 3. �e subgraph Kf eedback
is derived from the positive (r ≥ 4) ratings of the MovieLens 1M
dataset. �e second part of the con�guration consists in de�ning
the hyper-parameters of the model, i.e. internal parameters that
are not explicitly set by the learning process. For what concerns
node2vec, we optimize the parameters P ,Q on validation data, ex-
perimenting the pairs (P ,Q) ∈ {(1, 1), (1, 4), (4, 1)}. P , also called
return parameter, controls the likelihood of returning to a previ-
ously visited node. Q , also called in-out parameter, controls the
probability of moving further away from the source node e . By
playing with (P ,Q), node2vec achieves a random walk strategy able
to approximate a Breadth-First or a Depth-First search. For other
parameters, we use the con�guration obtained in a previous work,
i.e. a walk length l = 10, a dimension of the embeddings vector
d = 500, a number of walks per entity n = 500, a context size k = 10
and a number of epochs η = 5. Another hyper-parameter of the
proposed approach is the learning to rank model. We experiment
two listwise algorithms, AdaRank [27] and LambdaMart [4], on val-
idation data. �e implementation of these models is that provided
by the so�ware library RankLib4.
Evaluation protocol: we adopt an evaluation protocol that is sim-
ilar to RelPlusN [25]. We split the ratings in temporal order, using
80% of data to create a training set and 20% to create a probe set. In
the training set, we consider ratings r ≥ 4 as relevant items and the
rest as not relevant. From the probe set, we sample a 4% of data to
create a probe validation set and 16% to create a probe test set. �en,
from each of these two datasets, items with rating r = 5 are selected
and considered as relevant and for each user a number N = 100
of other items not rated by the user are randomly sampled as non-
relevant examples, creating the validation and the test set. �is

3h�ps://grouplens.org/datasets/movielens/1m/
4h�ps://sourceforge.net/p/lemur/wiki/RankLib/

3

https://grouplens.org/datasets/movielens/1m/
https://sourceforge.net/p/lemur/wiki/RankLib/

P,Q Ranking model P@5 P@10 MAP
1,4 LambdaMart 0.0791 0.0293 0.1717
4,1 LambdaMart 0.0182 0.0193 0.0570
1,1 LambdaMart 0.0174 0.0188 0.0565
1,4 AdaRank 0.0134 0.0098 0.0278
4,1 AdaRank 0.0078 0.0083 0.0286
1,1 AdaRank 0.0109 0.0098 0.0358

Table 1: Results on the validation set of entity2rec for di�er-
ent combinations of hyper-parameters

Model P@5 P@10 MAP
entity2rec 0.2814 0.2127 0.4232

MostPop 0.2154 0.1815 0.2907
NMF 0.1208 0.1150 0.1758
SVD 0.0543 0.0469 0.0888

ItemKNN 0.0463 0.0232 0.0990

Table 2: Results on the test set of entity2rec against the base-
lines
evaluation protocol allows to avoid the limitations of the TestItems
protocol, in which only rated items are ranked [26] and that is thus
very di�erent from the context of a real recommender system. Note
that the e�ect of this evaluation protocol is that of underestimating
the quality of the recommendations, as the assumption that all
unrated items are not relevant is pessimistic. �e set of elements
liked by a user R+(u) is de�ned as the items in the training set with
ratings r = 5. We measure P@5, P@10 and MAP. As baselines,
we use state-of-the-art collaborative �ltering algorithms based on
Non-Negative Matrix Factorization (NMF) [17], on Singular Value
Decomposition [15], ItemKNN with baselines [14] and the Most
Popular Items recommendation strategy, which is known to be
quite e�ective on MovieLens due to the power-law distribution of
user feedback data [6] (see also Tab. XIV in [19]). �e baselines are
implemented using the surprise python library5.

5 RESULTS
Comparison with state-of-the-art: the hyper-parameter opti-
mization on validation data shows that LambdaMart performs be�er
than Adarank and that the pair (P ,Q) = (1, 4), which corresponds to
a walk lingering in the neighborhood of the starting node, approxi-
mating Breadth-First-Search, works be�er than the other pairs. �e
best score, for every metric, is obtained by the pair (P ,Q) = (1, 4)
and the model LambdaMart (Tab. 16). �us, we evaluate this con�g-
uration on the test set, comparing it to the NMF, SVD, ItemKNN and
Most Popular Items baselines (Sec. 4), outperforming all of them
for all the metrics under consideration (Tab. 2).
Feature selection: one of the strengths of the proposed approach

is that of using features that have a clear interpretation. In this ex-
periment, we try to evaluate the importance of the selected features
ρp (u, i) on the overall ranking quality. To this end, we select one
feature at the time and we compute the ranking accuracy (Tab. 3),
observing that the feature ‘feedback’ is by far the best perform-
ing one. However, including content-based features improves the

5h�p://surprise.readthedocs.io/en/v1.0.2/matrix factorization.html
6Note that the scores obtained on the test set tend to be higher than those on the
validation set because the ratio of relevant/non-relevant items is higher in the la�er.

Features P@5 P@10 MAP
ρdbo:based on 0.0529 0.0247 0.0925

ρdbo:cinematoдraphy 0.0386 0.0290 0.0794
ρf eedback 0.2317 0.1708 0.3550
ρdbo:director 0.0219 0.0211 0.0949
ρdbo:edit inд 0.0294 0.0305 0.0724

ρdbo:music composer 0.0077 0.0040 0.0493
ρdbo:narrator 0.0572 0.0389 0.0834
ρdbo:producer 0.0119 0.0241 0.0498
ρdbo:starr inд 0.0128 0.0372 0.0728
ρdct :sub ject 0.0285 0.0326 0.0688
ρdbo:writer 0.0061 0.0216 0.0472
entity2rec 0.2814 0.2127 0.4232

Table 3: Performance of the proposed approach considering
one feature at the time

overall performance of the system, as can be seen by comparing
‘feedback’ with ‘entity2rec’, which includes all the features. We
expect this di�erence to be even more relevant on other datasets
a�ected by a higher sparsity as observed in similar experiments
with hybrid recommender systems [19, 28]. It is also worth noting
that ρf eedback outperforms all the collaborative �ltering baselines
of Tab. 2, showing the e�ectiveness of the proposed approach in
learning a measure of user-item relatedness even without content
information.

6 CONCLUSIONS
In this work, we propose entity2rec, a new measure of user-item
relatedness for top-N item recommendation. Starting from a knowl-
edge graph, property-speci�c relatedness scores are obtained using
a feature learning approach based on neural language models on
property-speci�c subgraphs and then combined through a learn-
ing to rank approach to generate a global user-item relatedness
measure optimizing top-N item recommendations. �is two-stage
approach has two major bene�ts: it allows to con�gure the system
to take into account a speci�c property when providing recom-
mendations (e.g. recommend movies with similar actors) and it
allows to let the learning to rank algorithm implicitly weight the
properties to provide recommendations. �e results on the Movie-
Lens 1M dataset show that the proposed approach outperforms
commonly used collaborative �ltering techniques based on ma-
trix factorization, nearest neighbors and the Most Popular items
strategy. From the data to the ranking, the feature engineering
e�ort is minimal and the manual intervention is limited to se�ing
and con�guring hyper-parameters of the learning process. Future
work will involve a more comprehensive evaluation, comparing
the model to other hybrid state-of-the-art recommender systems
on di�erent domains and datasets, and in a general improvement of
the feasibility of the proposed approach in a real recommendation
scenario (such as computational time, online updates, context of
the recommendations).

REFERENCES
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In �e
semantic web. Springer, 722–735.

4

http://surprise.readthedocs.io/en/v1.0.2/matrix_factorization.html

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pa�ern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[3] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked data-the story so
far. Semantic Services, Interoperability and Web Applications: Emerging Concepts
(2009), 205–227.

[4] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[5] Rose Catherine and William Cohen. 2016. Personalized Recommendations using
Knowledge Graphs: A Probabilistic Logic Programming Approach. In Proceedings
of the 10th ACM Conference on Recommender Systems. ACM, 325–332.

[6] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In Proceedings of the
fourth ACM conference on Recommender systems. ACM, 39–46.

[7] Tommaso Di Noia. 2016. Recommender Systems Meet Linked Open Data. In
International Conference on Web Engineering. Springer, 620–623.

[8] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito, and
Markus Zanker. 2012. Linked open data to support content-based recommender
systems. In Proceedings of the 8th International Conference on Semantic Systems.
ACM, 1–8.

[9] Cristhian Figueroa, Iacopo Vagliano, Oscar Rodrı́guez Rocha, and Maurizio
Morisio. 2015. A systematic literature review of Linked Data-based recommender
systems. Concurrency and Computation: Practice and Experience 27, 17 (2015),
4659–4684.

[10] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[12] F Maxwell Harper and Joseph A Konstan. 2016. �e movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016),
19.

[13] Houda Khrouf and Raphaël Troncy. 2013. Hybrid event recommendation using
linked data and user diversity. In Proceedings of the 7th ACM conference on
Recommender systems. ACM, 185–192.

[14] Yehuda Koren. 2010. Factor in the neighbors: Scalable and accurate collaborative
�ltering. ACM Transactions on Knowledge Discovery from Data (TKDD) 4, 1 (2010),
1.

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[16] Tie-Yan Liu and others. 2009. Learning to rank for information retrieval. Foun-
dations and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[17] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. 2014. An e�cient
non-negative matrix-factorization-based approach to collaborative �ltering for
recommender systems. IEEE Transactions on Industrial Informatics 10, 2 (2014),
1273–1284.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[19] Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, and Eugenio Di Sciascio.
2016. Sprank: Semantic path-based ranking for top-n recommendations using
linked open data. ACM Transactions on Intelligent Systems and Technology (TIST)
8, 1 (2016), 9.

[20] Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio, and Roberto Mirizzi.
2013. Top-n recommendations from implicit feedback leveraging linked open
data. In Proceedings of the 7th ACM conference on Recommender systems. ACM,
85–92.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[22] David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. Journal of Machine Learning
Technologies (2011).

[23] Bastian �ilitz and Ulf Leser. 2008. �erying distributed RDF data sources with
SPARQL. In European Semantic Web Conference. Springer, 524–538.

[24] Jessica Rosati, Petar Ristoski, Tommaso Di Noia, Renato de Leone, and Heiko
Paulheim. 2016. RDF graph embeddings for content-based recommender systems.
In CEUR workshop proceedings, Vol. 1673. RWTH, 23–30.

[25] Alan Said and Alejandro Bellogı́n. 2014. Comparative recommender system
evaluation: benchmarking recommendation frameworks. In Proceedings of the
8th ACM Conference on Recommender systems. ACM, 129–136.

[26] Harald Steck. 2013. Evaluation of recommendations: rating-prediction and
ranking. In Proceedings of the 7th ACM conference on Recommender systems. ACM,
213–220.

[27] Jun Xu and Hang Li. 2007. Adarank: a boosting algorithm for information
retrieval. In Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 391–398.

[28] Xiao Yu, Xiang Ren, Yizhou Sun, �anquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
A heterogeneous information network approach. In Proceedings of the 7th ACM
international conference on Web search and data mining. ACM, 283–292.

5

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Knowledge Graph
	3.2 Property-specific user-item relatedness
	3.3 Global user-item relatedness

	4 Experimental Setup
	5 Results
	6 Conclusions
	References

